This project page provides pytorch code that implements the following CVPR2019 paper:
Title: "DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis"
Arxiv: https://arxiv.org/abs/1904.01310
Python
- Python2.7
- Pytorch0.4 (
conda install pytorch=0.4.1 cuda90 torchvision=0.2.1 -c pytorch) - tensorflow (
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.12.0-cp27-none-linux_x86_64.whl) pip install easydict pathlibconda install requests nltk pandas scikit-image pyyaml cudatoolkit=9.0
Data
-
Download metadata for birds coco and save them to
data/python google_drive.py 1O_LtUP9sch09QH3s_EBAgLEctBQ5JBSJ ./data/bird.zippython google_drive.py 1rSnbIGNDGZeHlsUlLdahj0RJ9oo6lgH9 ./data/coco.zip
-
Download the birds image data. Extract them to
data/birds/cd data/birdswget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgztar -xvzf CUB_200_2011.tgz
-
Download coco dataset and extract the images to
data/coco/cd data/cocowget http://images.cocodataset.org/zips/train2014.zipwget http://images.cocodataset.org/zips/val2014.zipunzip train2014.zipunzip val2014.zipmv train2014 imagescp val2014/* images
Pretrained Models
- DAMSM for bird. Download and save it to
DAMSMencoders/python google_drive.py 1GNUKjVeyWYBJ8hEU-yrfYQpDOkxEyP3V DAMSMencoders/bird.zip
- DAMSM for coco. Download and save it to
DAMSMencoders/python google_drive.py 1zIrXCE9F6yfbEJIbNP5-YrEe2pZcPSGJ DAMSMencoders/coco.zip
- DM-GAN for bird. Download and save it to
modelspython google_drive.py 1BmDKqIyNY_7XWhXpxa2gm6TYxB2DQHS3 models/bird_DMGAN.pth
- DM-GAN for coco. Download and save it to
modelspython google_drive.py 1tQ9CJNiLlRLBKSUKHXKYms2tbfzllyO- models/coco_DMGAN.pth
- IS for bird
python google_drive.py 0B3y_msrWZaXLMzNMNWhWdW0zVWs eval/IS/bird/inception_finetuned_models.zip
- FID for bird
python google_drive.py 1747il5vnY2zNkmQ1x_8hySx537ZAJEtj eval/FID/bird_val.npz
- FID for coco
python google_drive.py 10NYi4XU3_bLjPEAg5KQal-l8A_d8lnL5 eval/FID/coco_val.npz
Training
- go into
code/folder - bird:
python main.py --cfg cfg/bird_DMGAN.yml --gpu 0 - coco:
python main.py --cfg cfg/coco_DMGAN.yml --gpu 0
Validation
- Images generation:
- go into
code/folder python main.py --cfg cfg/eval_bird.yml --gpu 0python main.py --cfg cfg/eval_coco.yml --gpu 0
- go into
- Inception score (IS for bird, IS for coco):
cd DM-GAN/eval/IS/bird && python inception_score_bird.py --image_folder ../../../models/bird_DMGANcd DM-GAN/eval/IS/coco && python inception_score_coco.py ../../../models/coco_DMGAN
- FID:
cd DM-GAN/eval/FID && python fid_score.py --gpu 0 --batch-size 50 --path1 bird_val.npz --path2 ../../models/bird_DMGANcd DM-GAN/eval/FID && python fid_score.py --gpu 0 --batch-size 50 --path1 coco_val.npz --path2 ../../models/coco_DMGAN
Performance
Note that after cleaning and refactoring the code of the paper, the results are slightly different. We use the Pytorch implementation to measure FID score. However, the official implementation (Tensorflow FID) gives different scores.
| Model | R-precision↑ | IS↑ | Pytorch FID↓ | TF FID↓ |
|---|---|---|---|---|
| bird_AttnGAN (paper) | 67.82% ± 4.43% | 4.36 ± 0.03 | 23.98 | 14.01 |
| bird_DMGAN (paper) | 72.31% ± 0.91% | 4.75 ± 0.07 | 16.09 | (-) |
| bird_DMGAN (pretrained model) | 76.58% ± 0.53% | 4.71 ± 0.06 | 15.34 | 11.91 |
| coco_AttnGAN (paper) | 85.47% ± 3.69% | 25.89 ± 0.47 | 35.49 | 29.53 |
| coco_DMGAN (paper) | 88.56% ± 0.28% | 30.49 ± 0.57 | 32.64 | (-) |
| coco_DMGAN (pretrained model) | 92.23% ± 0.37% | 32.43 ± 0.58 | 26.55 | 24.24 |
This code is released under the MIT License (refer to the LICENSE file for details).