Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion tensorrt_llm/_torch/autotuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -727,10 +727,10 @@ def choose_one(
new_tuning_failure_occured = False

for p in profiles:
tensors = self._prepare_input_tensors(p, inputs)
is_cache_hit, *_ = self.profiling_cache.search_cache(
custom_op, runners, p.get_opt_shapes(), tuning_config)
if not is_cache_hit:
tensors = self._prepare_input_tensors(p, inputs)
# Initialize runner and tactic as None in case of no valid tactic or runners are found
best_runner_id, best_tactic, min_time, has_tuning_failure_occured = self._profile_runners(
custom_op, runners, tensors, p, tuning_config, **kwargs)
Expand Down
6 changes: 3 additions & 3 deletions tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py
Original file line number Diff line number Diff line change
Expand Up @@ -626,7 +626,7 @@ def forward_impl(
all_rank_num_tokens_list = [[
val[idx_chunk] for val in all_rank_chunk_size_list
] for idx_chunk in range(num_chunks)]
chunk_size_list = all_rank_chunk_size_list[self.rank]
chunk_size_list = all_rank_chunk_size_list[self.parallel_rank]
else:
all_rank_num_tokens_list = [None] * num_chunks
chunk_size_list = self.split_chunk(x.shape[0], num_chunks)
Expand Down Expand Up @@ -685,7 +685,7 @@ def _reducescatter_or_allreduce(x_, idx):
outputs = torch.cat(outputs_list)

if self.use_dp and self.parallel_size > 1:
rank = self.mapping.tp_rank
rank = self.parallel_rank
outputs = outputs[:all_rank_num_tokens[rank]]
return outputs

Expand Down Expand Up @@ -714,7 +714,7 @@ def forward_fake(
is_nvfp4_input = isinstance(x, Fp4QuantizedTensor)
data_type = output_dtype if is_nvfp4_input else x.dtype
num_tokens = all_rank_num_tokens[
self.mapping.tp_rank] if all_rank_num_tokens else x.shape[0]
self.parallel_rank] if all_rank_num_tokens else x.shape[0]
hidden_size = x.shape[1] * (2 if is_nvfp4_input else 1)
top_k = self.routing_method.experts_per_token
return x.new_empty((num_tokens, top_k, hidden_size),
Expand Down
4 changes: 2 additions & 2 deletions tensorrt_llm/_torch/modules/fused_moe/fused_moe_deepgemm.py
Original file line number Diff line number Diff line change
Expand Up @@ -706,7 +706,7 @@ def forward_impl(
all_rank_num_tokens_list = [[
val[idx_chunk] for val in all_rank_chunk_size_list
] for idx_chunk in range(num_chunks)]
chunk_size_list = all_rank_chunk_size_list[self.rank]
chunk_size_list = all_rank_chunk_size_list[self.parallel_rank]
else:
all_rank_num_tokens_list = [None] * num_chunks
chunk_size_list = self.split_chunk(x.shape[0], num_chunks)
Expand Down Expand Up @@ -778,6 +778,6 @@ def _reducescatter_or_allreduce(x_, idx):
outputs = torch.cat(outputs_list)

if self.use_dp and self.parallel_size > 1:
rank = self.mapping.tp_rank
rank = self.parallel_rank
outputs = outputs[:all_rank_num_tokens[rank]]
return outputs
Original file line number Diff line number Diff line change
Expand Up @@ -661,7 +661,7 @@ def forward_impl(
)

if use_dp_padding:
rank = self.mapping.tp_rank
rank = self.parallel_rank
final_hidden_states = final_hidden_states[:
all_rank_num_tokens[rank]]
return final_hidden_states
Expand Down
4 changes: 2 additions & 2 deletions tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
Original file line number Diff line number Diff line change
Expand Up @@ -828,7 +828,7 @@ def split_chunk(split_token_num: int, split_num_chunks: int):
] for idx_chunk in range(num_chunks)]
all_rank_max_num_tokens_list = split_chunk(all_rank_max_num_tokens,
num_chunks)
chunk_size_list = all_rank_chunk_size_list[self.rank]
chunk_size_list = all_rank_chunk_size_list[self.parallel_rank]
if use_all_to_all:
all_rank_num_tokens_list = [[
1 if val == 0 else val for val in val_list
Expand Down Expand Up @@ -916,7 +916,7 @@ def split_chunk(split_token_num: int, split_num_chunks: int):
self.event_dict[EventType.MoeChunkingOverlap].record()
self.event_dict[EventType.MoeChunkingOverlap].wait()
outputs = torch.cat(outputs_list)
rank = self.mapping.tp_rank
rank = self.parallel_rank
outputs = outputs[:all_rank_num_tokens[rank]]
self.repeat_idx = 0 if self.repeat_idx == self.repeat_count - 1 else self.repeat_idx + 1
return outputs
Expand Down
1 change: 1 addition & 0 deletions tensorrt_llm/_torch/modules/fused_moe/interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,6 +181,7 @@ def __init__(

# All ranks participate in allreduce regardless of EP/TP combination
self.mapping = model_config.mapping
self.parallel_rank = self.mapping.tp_rank
self.parallel_size = self.mapping.tp_size
self.intermediate_size_per_partition = intermediate_size // self.tp_size

Expand Down