Skip to content

πŸ“„ A Streamlit-based RAG (Retrieval-Augmented Generation) app that extracts text from PDFs, builds vector embeddings (FAISS), and enables question answering with Google Gemini.

Notifications You must be signed in to change notification settings

Naresh-Cod/RAG_Model_PDF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“„ Suraj RAG Project (Gemini + Streamlit)

A simple Retrieval-Augmented Generation (RAG) project using Google Gemini LLM + Streamlit UI.
This app lets you upload PDFs, create embeddings, and ask questions to get intelligent answers.


✨ Features

  • πŸ“‚ Upload PDF files
  • πŸ“ Extract and process text
  • 🧠 Build vector embeddings with FAISS
  • πŸ” Ask questions and get answers from Gemini LLM
  • 🌐 Easy-to-use Streamlit interface

πŸš€ Installation & Run

1️⃣ Clone Repository

git clone https://github.com/your-username/RAG_Model_PDF.git
cd RAG_Model_PDF

2️⃣ Setup Environment
python3 -m venv .venv
source .venv/bin/activate   # Linux/Mac
.venv\Scripts\activate      # Windows

3️⃣ Install Requirements
pip install -r requirements.txt

4️⃣ Configure API Key

Create a .env file in project root:

GOOGLE_API_KEY=your_api_key_here

5️⃣ Run the App
streamlit run app.py


Open πŸ‘‰ http://localhost:8501

πŸ“‚ Project Structure
RAG_Model_PDF/
│── app.py                 # Main Streamlit app
│── requirements.txt        # Dependencies
│── README.md               # Documentation
│── utils/
β”‚   β”œβ”€β”€ index_builder.py    # FAISS index creation
β”‚   β”œβ”€β”€ rag_qa_engine.py    # RAG QA logic
│── .env                    # (Your API key here)
│── .venv/                  # Virtual environment

πŸ› οΈ Requirements

Python 3.11+

Streamlit

LangChain

FAISS

Sentence Transformers

Google Generative AI

πŸ“Œ Example Usage

Upload sample.pdf

Ask: "What is this document about?"

Get instant answers powered by RAG + Gemini πŸš€# RAG_Model_PDF

About

πŸ“„ A Streamlit-based RAG (Retrieval-Augmented Generation) app that extracts text from PDFs, builds vector embeddings (FAISS), and enables question answering with Google Gemini.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages