Skip to content

OmH3/profyler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸŽ“ Research Profiler AI - Complete Guide

A modern, AI-powered research publication analysis system with automatic evaluation and beautiful UI.


✨ What's New

🎨 Modern Streamlit Frontend

  • Shadcn-inspired design with gradient backgrounds
  • Split-screen results - Data preview + AI analysis side-by-side
  • Interactive charts with Plotly
  • Multiple input methods - Single author, CSV, or BibTeX
  • One-click exports - Excel, Word, JSON

πŸ€– Automatic AI Evaluation

  • Impact prediction with ML models (0-100+ score)
  • Trend analysis with 3-year forecasts
  • Strategic recommendations from AI
  • H-index & i10-index calculation
  • Emerging topics identification

πŸš€ Quick Start (Easiest Method)

Windows Users:

Just double-click: START_APP.bat

This will:

  1. Start Flask API on port 5000
  2. Start Streamlit on port 8501
  3. Open browser automatically

Done! πŸŽ‰


πŸ“‹ Manual Start (All Platforms)

Prerequisites:

# Install Python packages
pip install -r API/requirements.txt
pip install -r requirements_streamlit.txt

Step 1: Start Flask API

# Terminal 1
cd API
python main.py

Flask runs on: http://localhost:5000

Step 2: Start Streamlit Frontend

# Terminal 2
streamlit run streamlit_app.py

Streamlit opens at: http://localhost:8501


πŸ“ Project Structure

Profyler/
β”œβ”€β”€ API/                              # Backend Flask API
β”‚   β”œβ”€β”€ main.py                       # Flask app with AI integration
β”‚   β”œβ”€β”€ fetchers.py                   # Academic API fetchers
β”‚   β”œβ”€β”€ requirements.txt              # API dependencies
β”‚   β”œβ”€β”€ ai_models/                    # AI/ML models
β”‚   β”‚   β”œβ”€β”€ impact_predictor.py       # Impact prediction ML
β”‚   β”‚   └── trend_analyzer.py         # Trend analysis ML
β”‚   β”œβ”€β”€ test_simple.py                # API test script
β”‚   β”œβ”€β”€ AI_ML_FEATURES.md             # AI documentation
β”‚   β”œβ”€β”€ AI_QUICK_START.md             # AI quick guide
β”‚   └── AUTOMATIC_AI_EVALUATION.md    # Auto-eval docs
β”‚
β”œβ”€β”€ streamlit_app.py                  # Modern Streamlit frontend
β”œβ”€β”€ requirements_streamlit.txt        # Frontend dependencies
β”œβ”€β”€ START_APP.bat                     # Quick start script (Windows)
β”œβ”€β”€ STREAMLIT_GUIDE.md                # Frontend guide
└── README.md                         # This file

🎯 Features Overview

1. Multi-Source Data Fetching

  • Semantic Scholar: Abstracts, citations, affiliations
  • DBLP: Computer science publications
  • CrossRef: DOI-based metadata
  • Intelligent merging: Combines best data from all sources

2. AI/ML Analysis

  • Impact Prediction:

    • 25+ features extracted per paper
    • Ensemble ML (RandomForest + GradientBoosting)
    • Scores: 0-100+ (Low/Medium/High/Very High/Exceptional)
  • Trend Analysis:

    • Publication trends (Growing/Stable/Declining)
    • 3-year future predictions
    • Emerging research topics
    • Keyword evolution tracking
  • Research Metrics:

    • H-index calculation
    • i10-index calculation
    • Research diversity score
    • Collaboration patterns
  • Strategic Insights:

    • AI-generated recommendations
    • Collaboration suggestions
    • Venue recommendations
    • Focus area guidance

3. Beautiful UI

  • Modern Design: Gradient backgrounds, smooth animations
  • Responsive: Works on desktop, tablet, mobile
  • Split View: Data + AI analysis side-by-side
  • Interactive: Filterable tables, zoomable charts
  • Export Options: Excel, Word, JSON

πŸ“Š Usage Examples

Example 1: Quick Single Author Analysis

1. Open Streamlit app
2. Select "Single Author"
3. Enter: "Andrew Ng"
4. Years: 2015-2023
5. Click "Analyze Publications"
6. Wait ~20 seconds
7. View results with AI insights!

Example 2: Bulk Analysis (CSV)

1. Prepare CSV with columns: Name, Affiliation
2. Upload CSV file
3. Set year range
4. Click "Analyze Publications"
5. Get combined analysis for all authors

🎨 UI Preview

Input Page

  • Clean gradient background (purple/blue)
  • Three input methods (tabs)
  • Advanced filters (expandable)
  • Modern form with hover effects

Results Page

Top: 5 metric cards (Total Pubs, H-Index, i10-Index, Impact, High Impact %)

Left Column: Data preview with filterable table + downloads

Right Column: AI analysis with 4 tabs:

  1. 🎯 Impact Analysis
  2. πŸ“ˆ Trend Analysis
  3. πŸ’‘ Strategic Insights
  4. πŸ“Š Visualizations

πŸ“₯ Export Formats

  1. Excel (.xlsx) - All publications, multiple sheets
  2. Word (.docx) - Formatted report with abstracts
  3. JSON (Full) - Complete data + AI evaluation
  4. JSON (AI) - Just AI insights

πŸ› Troubleshooting

"Cannot connect to API"

# Make sure Flask is running
cd API
python main.py

"No publications found"

  • Check author name spelling
  • Try wider year range
  • Add affiliation filter

Slow loading

  • Normal! Takes 20-30 seconds
  • Fetching from 3 APIs + AI analysis
  • Progress bar shows status

πŸŽ“ Academic Metrics

H-Index

Number of papers (h) with at least h citations each.

  • High: 20+ (very impactful)

i10-Index

Number of publications with 10+ citations.

  • High: 40+ (productive + impactful)

Impact Score

ML-predicted impact (0-100+) based on 25+ features


πŸŽ‰ Complete Feature List

βœ… Multi-source data fetching (3 APIs)
βœ… Automatic AI evaluation
βœ… Impact prediction (ML)
βœ… Trend analysis (NLP + Stats)
βœ… H-index & i10-index
βœ… Strategic recommendations
βœ… Beautiful modern UI
βœ… Split-screen results
βœ… Interactive charts
βœ… Multiple input methods
βœ… Excel/Word/JSON export


🌟 Status: PRODUCTION READY

To Start:

# Option 1: Double-click (Windows)
START_APP.bat

# Option 2: Manual
# Terminal 1: cd API && python main.py
# Terminal 2: streamlit run streamlit_app.py

πŸ“ž Documentation

  • STREAMLIT_GUIDE.md - Frontend guide
  • API/AI_ML_FEATURES.md - AI features (800+ lines)
  • API/AUTOMATIC_AI_EVALUATION.md - Auto-eval guide

Made with ❀️ using Flask, Streamlit, and Machine Learning

About

publication summariser for faculty members

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published