A modern, AI-powered research publication analysis system with automatic evaluation and beautiful UI.
- Shadcn-inspired design with gradient backgrounds
- Split-screen results - Data preview + AI analysis side-by-side
- Interactive charts with Plotly
- Multiple input methods - Single author, CSV, or BibTeX
- One-click exports - Excel, Word, JSON
- Impact prediction with ML models (0-100+ score)
- Trend analysis with 3-year forecasts
- Strategic recommendations from AI
- H-index & i10-index calculation
- Emerging topics identification
Just double-click: START_APP.bat
This will:
- Start Flask API on port 5000
- Start Streamlit on port 8501
- Open browser automatically
Done! π
# Install Python packages
pip install -r API/requirements.txt
pip install -r requirements_streamlit.txt# Terminal 1
cd API
python main.pyFlask runs on: http://localhost:5000
# Terminal 2
streamlit run streamlit_app.pyStreamlit opens at: http://localhost:8501
Profyler/
βββ API/ # Backend Flask API
β βββ main.py # Flask app with AI integration
β βββ fetchers.py # Academic API fetchers
β βββ requirements.txt # API dependencies
β βββ ai_models/ # AI/ML models
β β βββ impact_predictor.py # Impact prediction ML
β β βββ trend_analyzer.py # Trend analysis ML
β βββ test_simple.py # API test script
β βββ AI_ML_FEATURES.md # AI documentation
β βββ AI_QUICK_START.md # AI quick guide
β βββ AUTOMATIC_AI_EVALUATION.md # Auto-eval docs
β
βββ streamlit_app.py # Modern Streamlit frontend
βββ requirements_streamlit.txt # Frontend dependencies
βββ START_APP.bat # Quick start script (Windows)
βββ STREAMLIT_GUIDE.md # Frontend guide
βββ README.md # This file
- Semantic Scholar: Abstracts, citations, affiliations
- DBLP: Computer science publications
- CrossRef: DOI-based metadata
- Intelligent merging: Combines best data from all sources
-
Impact Prediction:
- 25+ features extracted per paper
- Ensemble ML (RandomForest + GradientBoosting)
- Scores: 0-100+ (Low/Medium/High/Very High/Exceptional)
-
Trend Analysis:
- Publication trends (Growing/Stable/Declining)
- 3-year future predictions
- Emerging research topics
- Keyword evolution tracking
-
Research Metrics:
- H-index calculation
- i10-index calculation
- Research diversity score
- Collaboration patterns
-
Strategic Insights:
- AI-generated recommendations
- Collaboration suggestions
- Venue recommendations
- Focus area guidance
- Modern Design: Gradient backgrounds, smooth animations
- Responsive: Works on desktop, tablet, mobile
- Split View: Data + AI analysis side-by-side
- Interactive: Filterable tables, zoomable charts
- Export Options: Excel, Word, JSON
1. Open Streamlit app
2. Select "Single Author"
3. Enter: "Andrew Ng"
4. Years: 2015-2023
5. Click "Analyze Publications"
6. Wait ~20 seconds
7. View results with AI insights!
1. Prepare CSV with columns: Name, Affiliation
2. Upload CSV file
3. Set year range
4. Click "Analyze Publications"
5. Get combined analysis for all authors
- Clean gradient background (purple/blue)
- Three input methods (tabs)
- Advanced filters (expandable)
- Modern form with hover effects
Top: 5 metric cards (Total Pubs, H-Index, i10-Index, Impact, High Impact %)
Left Column: Data preview with filterable table + downloads
Right Column: AI analysis with 4 tabs:
- π― Impact Analysis
- π Trend Analysis
- π‘ Strategic Insights
- π Visualizations
- Excel (.xlsx) - All publications, multiple sheets
- Word (.docx) - Formatted report with abstracts
- JSON (Full) - Complete data + AI evaluation
- JSON (AI) - Just AI insights
# Make sure Flask is running
cd API
python main.py- Check author name spelling
- Try wider year range
- Add affiliation filter
- Normal! Takes 20-30 seconds
- Fetching from 3 APIs + AI analysis
- Progress bar shows status
Number of papers (h) with at least h citations each.
- High: 20+ (very impactful)
Number of publications with 10+ citations.
- High: 40+ (productive + impactful)
ML-predicted impact (0-100+) based on 25+ features
β
Multi-source data fetching (3 APIs)
β
Automatic AI evaluation
β
Impact prediction (ML)
β
Trend analysis (NLP + Stats)
β
H-index & i10-index
β
Strategic recommendations
β
Beautiful modern UI
β
Split-screen results
β
Interactive charts
β
Multiple input methods
β
Excel/Word/JSON export
# Option 1: Double-click (Windows)
START_APP.bat
# Option 2: Manual
# Terminal 1: cd API && python main.py
# Terminal 2: streamlit run streamlit_app.pySTREAMLIT_GUIDE.md- Frontend guideAPI/AI_ML_FEATURES.md- AI features (800+ lines)API/AUTOMATIC_AI_EVALUATION.md- Auto-eval guide
Made with β€οΈ using Flask, Streamlit, and Machine Learning