Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
161 changes: 120 additions & 41 deletions fastdeploy/model_executor/layers/backends/xpu/moe/fused_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@
weight_quantize_xpu,
xpu_moe_layer,
)
from fastdeploy.model_executor.utils import default_weight_loader, set_weight_attrs
from fastdeploy.platforms import current_platform


class XPUMoEMethod(MoEMethodBase):
Expand Down Expand Up @@ -61,78 +63,155 @@ def create_weights(self, layer: nn.Layer, **extra_weight_attrs):
"""
create weight process.
"""
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.moe_intermediate_size * 2,
layer.hidden_size,
]
self.down_proj_weight_shape = [
layer.num_local_experts,
layer.hidden_size,
layer.moe_intermediate_size,
]
if self.moe_quant_type in ["weight_only_int4", "w4a8"]:
self.up_gate_proj_weight_shape[-1] //= 2
self.down_proj_weight_shape[-1] //= 2

setattr(
layer,
self.added_weight_attrs[0],
layer.create_parameter(
if layer.fd_config.load_config.load_choices == "default_v1" and self.moe_quant_type in ["w16a16"]:
if current_platform.is_cuda():
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.hidden_size,
layer.moe_intermediate_size * 2,
]
self.down_proj_weight_shape = [layer.num_local_experts, layer.moe_intermediate_size, layer.hidden_size]
extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 1, "down": 0, "up": 1}}
else:
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.moe_intermediate_size * 2,
layer.hidden_size,
]
self.down_proj_weight_shape = [layer.num_local_experts, layer.hidden_size, layer.moe_intermediate_size]
extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 0, "down": 1, "up": 0}}

layer.up_gate_proj_weight = layer.create_parameter(
shape=self.up_gate_proj_weight_shape,
dtype=self.weight_dtype,
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
setattr(
layer,
self.added_weight_attrs[1],
layer.create_parameter(
)

layer.down_proj_weight = layer.create_parameter(
shape=self.down_proj_weight_shape,
dtype=self.weight_dtype,
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
)

if self.moe_quant_type in ["weight_only_int8", "w8a8", "weight_only_int4", "w4a8"]:
self.up_gate_proj_scale_shape = [
set_weight_attrs(
layer.up_gate_proj_weight,
{
"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)),
"weight_need_transpose": extra_weight_attrs.get("model_format") == "torch",
},
)
set_weight_attrs(
layer.down_proj_weight,
{
"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)),
"weight_need_transpose": extra_weight_attrs.get("model_format") == "torch",
},
)

if layer.with_bias:
layer.up_gate_proj_bias = layer.create_parameter(
shape=[layer.num_experts, layer.moe_intermediate_size * 2],
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
)

layer.down_proj_bias = layer.create_parameter(
shape=[layer.num_experts, layer.hidden_size],
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
layer.up_gate_proj_bias,
{
"weight_loader": extra_weight_attrs.get(
"weight_loader", default_weight_loader(layer.fd_config)
),
"model_format": extra_weight_attrs.get("model_format", ""),
},
)
set_weight_attrs(
layer.down_proj_bias,
{
"weight_loader": extra_weight_attrs.get(
"weight_loader", default_weight_loader(layer.fd_config)
),
"model_format": extra_weight_attrs.get("model_format", ""),
},
)

else:
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.moe_intermediate_size * 2,
layer.hidden_size,
]
self.down_proj_scale_shape = [
self.down_proj_weight_shape = [
layer.num_local_experts,
layer.hidden_size,
layer.moe_intermediate_size,
]
if self.moe_quant_type in ["weight_only_int4", "w4a8"]:
self.up_gate_proj_weight_shape[-1] //= 2
self.down_proj_weight_shape[-1] //= 2

setattr(
layer,
self.added_scale_attrs[0],
self.added_weight_attrs[0],
layer.create_parameter(
shape=self.up_gate_proj_scale_shape,
dtype=self.scale_dtype,
shape=self.up_gate_proj_weight_shape,
dtype=self.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
setattr(
layer,
self.added_scale_attrs[1],
self.added_weight_attrs[1],
layer.create_parameter(
shape=self.down_proj_scale_shape,
dtype=self.scale_dtype,
shape=self.down_proj_weight_shape,
dtype=self.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)

if self.moe_quant_type in ["w8a8", "w4a8"]:
for in_scale_name in self.added_in_scale_attrs:
if self.moe_quant_type in ["weight_only_int8", "w8a8", "weight_only_int4", "w4a8"]:
self.up_gate_proj_scale_shape = [
layer.num_local_experts,
layer.moe_intermediate_size * 2,
]
self.down_proj_scale_shape = [
layer.num_local_experts,
layer.hidden_size,
]
setattr(
layer,
in_scale_name,
self.added_scale_attrs[0],
layer.create_parameter(
shape=[layer.num_local_experts],
shape=self.up_gate_proj_scale_shape,
dtype=self.scale_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
setattr(
layer,
self.added_scale_attrs[1],
layer.create_parameter(
shape=self.down_proj_scale_shape,
dtype=self.scale_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)

if self.moe_quant_type in ["w8a8", "w4a8"]:
for in_scale_name in self.added_in_scale_attrs:
setattr(
layer,
in_scale_name,
layer.create_parameter(
shape=[layer.num_local_experts],
dtype=self.scale_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)

def process_loaded_weights(self, layer: nn.Layer, state_dict):
up_gate_proj_weights, down_proj_weights, _, _ = layer.extract_moe_ffn_weights(state_dict)
Expand Down
4 changes: 2 additions & 2 deletions fastdeploy/model_executor/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,8 +261,8 @@ def v1_loader_support(fd_config):
def _err_msg(msg: str) -> str:
logger.info(msg + "; fallback to the v0 loader for model loading.")

if not current_platform.is_cuda():
_err_msg("v1loader currently does not support backends other than CUDA")
if not (current_platform.is_cuda() or current_platform.is_xpu()):
_err_msg("v1loader currently only support backends gpu and xpu")
return False

if is_pre_sliced_weight(fd_config.model_config.model):
Expand Down
9 changes: 6 additions & 3 deletions scripts/run_ci_xpu.sh
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,8 @@ python -m fastdeploy.entrypoints.openai.api_server \
--num-gpu-blocks-override 16384 \
--max-model-len 32768 \
--max-num-seqs 128 \
--quantization wint4 > server.log 2>&1 &
--quantization wint4 \
--load-choices default > server.log 2>&1 &

sleep 60
# 探活
Expand Down Expand Up @@ -120,7 +121,8 @@ python -m fastdeploy.entrypoints.openai.api_server \
--num-gpu-blocks-override 16384 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "W4A8" > server.log 2>&1 &
--quantization "W4A8" \
--load-choices default > server.log 2>&1 &

sleep 60
# 探活
Expand Down Expand Up @@ -190,7 +192,8 @@ python -m fastdeploy.entrypoints.openai.api_server \
--enable-mm \
--mm-processor-kwargs '{"video_max_frames": 30}' \
--limit-mm-per-prompt '{"image": 10, "video": 3}' \
--reasoning-parser ernie-45-vl > server.log 2>&1 &
--reasoning-parser ernie-45-vl \
--load-choices default > server.log 2>&1 &

sleep 60
# 探活
Expand Down
1 change: 1 addition & 0 deletions tests/ci_use/XPU_45T/run_ep.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ def test_fd_ep():
quantization="wint4",
engine_worker_queue_port=engine_worker_queue_port,
max_num_seqs=8,
load_choices="default",
)

try:
Expand Down
Loading