Skip to content

Production-ready multi-runtime agent template system for Claude Code, LangGraph, and OpenAI Assistants. Single YAML specs generate artifacts for multiple AI agent runtimes with comprehensive validation, security, and CI/CD.

License

Notifications You must be signed in to change notification settings

Real-AI-Engineering/claude-code-agents

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Claude Agents Repository

A production-ready, multi-runtime agent template system that generates artifacts for Claude Code Subagents, LangGraph, and OpenAI Assistants from a single YAML specification.

πŸš€ Quick Start

# 1. Clone and install
git clone <repository-url>
cd claude-code-agents
pip install -e ".[dev]"

# 2. Validate existing agents
agents validate

# 3. Generate Claude Code subagents
agents render claude --install

# 4. Generate LangGraph agents
agents render langgraph

# 5. List available agents
agents list-agents

πŸ“‹ What's Inside

  • agents/ β€” YAML specifications organized by domain (engineering, data, ops, product)
  • recipes/ β€” Multi-agent workflows for complex tasks
  • adapters/ β€” Runtime-specific generators (Claude, LangGraph, Assistants)
  • templates/ β€” Jinja2 templates for artifact generation
  • schemas/ β€” JSON Schema validation for specifications
  • scripts/ β€” CLI tools for validation, rendering, and management

πŸ—οΈ Architecture

Single Source of Truth

Write once in YAML, deploy everywhere:

id: security-auditor
name: Security Auditor  
summary: Reviews code for vulnerabilities using OWASP standards
role: |
  You are a senior security engineer specializing in application security...

model:
  provider: anthropic
  family: claude
  tier: sonnet
  
tools:
  - id: code_scanner
    type: mcp
    spec: tools/mcp_servers/security_scanner.yaml

Multi-Runtime Support

Claude Code Subagent β†’ ~/.claude/agents/security-auditor.md

---
name: security-auditor
description: Reviews code for vulnerabilities using OWASP standards
model: sonnet
tools: code_scanner
---

You are a senior security engineer...

LangGraph Agent β†’ adapters/langgraph/security_auditor_agent.py

from langgraph.prebuilt import create_react_agent

class SecurityAuditorAgent:
    def __init__(self):
        self.model = ChatAnthropic(model="claude-3-5-sonnet-20241022")
        # ... implementation

πŸ”§ CLI Commands

Validation

# Validate all specifications
agents validate

# Validate specific file
agents validate agents/engineering/security-auditor.yaml

# Verbose validation with detailed errors
agents validate --verbose

Rendering

# Generate Claude subagents 
agents render claude

# Generate and install to ~/.claude/agents
agents render claude --install

# Generate LangGraph agents
agents render langgraph

# Render specific agent
agents render claude --agent-id security-auditor

Management

# List all agents
agents list-agents

# Filter by domain
agents list-agents --domain engineering

# Filter by tag
agents list-agents --tag security

# Create new agent from template
agents init-agent my-new-agent --domain custom --name "My New Agent"

πŸ“– Agent Specification

Agents follow the Agent Spec v1 schema:

Required Fields

  • id: Unique identifier (kebab-case)
  • name: Human-readable name
  • summary: Brief capability description
  • role: System prompt defining behavior
  • model: Provider, family, and tier configuration
  • ownership: Owner contact information
  • version: Semantic version

Optional Fields

  • invocation: Auto-trigger or explicit invocation
  • tools: MCP servers, HTTP APIs, built-in functions
  • constraints: Token limits, cost budgets, PII policies
  • memory: Ephemeral, persistent, or hybrid storage
  • evaluation: Acceptance criteria and test cases
  • observability: Logging, tracing, and metrics

πŸ”„ Multi-Agent Workflows

Recipes define complex workflows combining multiple agents:

id: feature-development
name: Complete Feature Development Workflow
graph:
  - stage: planning
    sequence:
      - agent: business-analyst
      - agent: backend-architect
        
  - stage: security_review
    sequence:
      - agent: security-auditor
        
  - stage: implementation
    parallel:
      - agent: docs-architect
      - agent: test-automator

🏒 Available Agents

Engineering

  • backend-architect β€” Scalable system design and API architecture
  • security-auditor β€” OWASP/CIS compliance and vulnerability assessment
  • test-automator β€” Test strategy, automation, and coverage analysis

Data

  • data-engineer β€” ETL pipelines, data quality, and warehouse design

Operations

  • incident-responder β€” Structured incident response and post-mortems

Product

  • business-analyst β€” Requirements gathering and user story creation
  • docs-architect β€” Technical documentation and API guides

πŸ›‘οΈ Security & Quality

Built-in Safeguards

  • Schema validation for all YAML specifications
  • Secret detection in pre-commit hooks and CI
  • PII policies configurable per agent
  • Security scanning with Bandit and Safety

Quality Gates

  • Automated testing with pytest (>80% coverage)
  • Code formatting with Ruff and Black
  • YAML linting with yamllint
  • Type checking with mypy

πŸš€ Getting Started

1. Installation

git clone <repository-url>
cd claude-code-agents
pip install -e ".[dev]"

2. Set up development environment

# Install pre-commit hooks
pre-commit install

# Run tests
pytest

# Validate all specs
agents validate

3. Create your first agent

# Initialize from template
agents init-agent my-expert --domain engineering --name "My Expert"

# Edit the generated file
vim agents/engineering/my-expert.yaml

# Validate and render
agents validate agents/engineering/my-expert.yaml
agents render claude --agent-id my-expert --install

4. Deploy to your runtime

Claude Code: Agents are automatically installed to ~/.claude/agents/ with --install flag

LangGraph:

agents render langgraph
cd adapters/langgraph
pip install -r requirements.txt
python app.py  # Starts FastAPI server on :8000

πŸ“Š Success Metrics

  • Time-to-first-agent: ≀ 10 minutes from clone to working subagent
  • Time-to-first-workflow: ≀ 20 minutes for 3-stage recipe
  • Test coverage: β‰₯ 80% for critical paths
  • Zero secrets committed to repository

πŸ“š Documentation

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/my-agent)
  3. Follow the style guide for prompts and naming
  4. Add tests for new functionality
  5. Run the full validation suite (make test)
  6. Submit a pull request

πŸ“„ License

Apache-2.0 β€” see LICENSE for details.

πŸ†˜ Support


⚑ Built for production β€’ πŸ”’ Security-first β€’ πŸš€ Developer-friendly

About

Production-ready multi-runtime agent template system for Claude Code, LangGraph, and OpenAI Assistants. Single YAML specs generate artifacts for multiple AI agent runtimes with comprehensive validation, security, and CI/CD.

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •