Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions ptan/experience.py
Original file line number Diff line number Diff line change
Expand Up @@ -493,8 +493,8 @@ def simple_dqn(model, **kwargs):
return QLearningPreprocessor(model=model, target_model=None, use_double_dqn=False, **kwargs)

@staticmethod
def target_dqn(model, target_model, **kwards):
return QLearningPreprocessor(model, target_model, use_double_dqn=False, **kwards)
def target_dqn(model, target_model, **kwargs):
return QLearningPreprocessor(model, target_model, use_double_dqn=False, **kwargs)

@staticmethod
def double_dqn(model, target_model, **kwargs):
Expand Down
13 changes: 6 additions & 7 deletions samples/rainbow/lib/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,10 +85,10 @@ def unpack_batch(batch):
def calc_loss_dqn(batch, net, tgt_net, gamma, cuda=False):
states, actions, rewards, dones, next_states = unpack_batch(batch)

states_v = Variable(torch.from_numpy(states))
next_states_v = Variable(torch.from_numpy(next_states), volatile=True)
actions_v = Variable(torch.from_numpy(actions))
rewards_v = Variable(torch.from_numpy(rewards))
states_v = torch.from_numpy(states)
next_states_v = torch.from_numpy(next_states)
actions_v = torch.from_numpy(actions)
rewards_v = torch.from_numpy(rewards)
done_mask = torch.ByteTensor(dones)
if cuda:
states_v = states_v.cuda()
Expand All @@ -100,10 +100,9 @@ def calc_loss_dqn(batch, net, tgt_net, gamma, cuda=False):
state_action_values = net(states_v).gather(1, actions_v.unsqueeze(-1)).squeeze(-1)
next_state_values = tgt_net(next_states_v).max(1)[0]
next_state_values[done_mask] = 0.0
next_state_values.volatile = False

expected_state_action_values = next_state_values * gamma + rewards_v
return nn.MSELoss()(state_action_values, expected_state_action_values)
expected_state_action_values = (next_state_values * gamma + rewards_v).detach()
return nn.functional.mse_loss(state_action_values, expected_state_action_values)


class RewardTracker:
Expand Down