Skip to content

Subhayan18/Scatter_Gather_variant_calling

Repository files navigation

Scatter-Gather Variant Calling for Whole Genome Sequencing

A comprehensive guide to parallelized variant calling using the scatter-gather approach for high-throughput whole genome sequencing analysis.


Table of Contents


Overview

The Challenge

Whole Genome Sequencing (WGS) generates massive datasets requiring intensive computational resources for variant calling:

  • Human genome: ~3 billion base pairs
  • Typical WGS: 30-100x coverage
  • Data size: 50-200 GB per sample
  • Processing time: 12-48 hours single-threaded

The Solution

Scatter-gather parallelization divides the genome into independent intervals, processes them in parallel, and merges the results - dramatically reducing runtime while maintaining accuracy.


What is Scatter-Gather?

Scatter-gather is a parallel processing pattern that:

                    SCATTER
                       ↓
    ┌──────────────────┼──────────────────┐
    ↓                  ↓                   ↓
[Interval 1]      [Interval 2]  ...  [Interval N]
    ↓                  ↓                   ↓
[Process 1]       [Process 2]  ...  [Process N]
    ↓                  ↓                   ↓
[Output 1]        [Output 2]   ...  [Output N]
    └──────────────────┼──────────────────┘
                       ↓
                    GATHER
                       ↓
              [Final Output]

Three Phases:

  1. SCATTER: Split genome into independent intervals
  2. PROCESS: Call variants on each interval in parallel
  3. GATHER: Merge interval results into final output

Why Scatter-Gather for WGS?

1. Computational Efficiency

Without Scatter-Gather:

Single Process: [========================================] 24 hours
                          One CPU core

With Scatter-Gather (50 intervals):

Process 1:  [====] 30 minutes
Process 2:  [====] 30 minutes
Process 3:  [====] 30 minutes
...
Process 50: [====] 30 minutes
            ↓
Total Time: 30-45 minutes (with 50 cores)

Speedup: 30-50x faster with proportional compute resources

2. Memory Management

Approach Memory Required Duration
Whole genome 60-100 GB 24 hours
Per interval (50 intervals) 2-4 GB 30 mins

Benefit: Fits within typical HPC node memory limits

3. Resource Optimization

  • Efficient HPC utilization: Matches cluster job scheduler paradigms
  • Fault tolerance: Failed intervals can be re-run independently
  • Flexibility: Scale parallelization to available resources

4. I/O Optimization

  • Reduced memory overhead: Smaller data chunks in RAM
  • Better caching: Interval-sized data fits in CPU cache
  • Lower peak disk I/O: Distributed read/write operations

Architecture

Interval Generation Strategy

Option 1: Chromosome-Based Scattering

chr1  [=================]
chr2  [==============]
chr3  [=============]
...
chrX  [======]
chrY  [==]

Pros: Simple, ~25 intervals
Cons: Uneven workload (chr1 is 8x larger than chr21)

Option 2: Fixed-Size Intervals

chr1  [===][===][===][===][===]...
chr2  [===][===][===][===]...
chr3  [===][===][===]...

Pros: Even workload distribution
Cons: More intervals to manage (~50-200)

Option 3: Callable Regions (Recommended for WGS)

Genome:     [===]   [======]     [===]  [========]   [==]
            |       |            |      |          |
Intervals:  [===]   [======]     [===]  [========]   [==]
            (skip N regions, centromeres, gaps)

Pros:

  • Skip non-callable regions (N-regions, centromeres)
  • Optimal computational efficiency
  • Even workload with ~50-100 intervals

Cons: Requires interval list generation

File Structure

project/
├── intervals/
│   ├── interval_001.bed
│   ├── interval_002.bed
│   └── ...
│
├── scatter/
│   ├── sample_interval_001.vcf
│   ├── sample_interval_002.vcf
│   └── ...
│
└── gather/
    └── sample_final.vcf

Advantages

1. Dramatic Runtime Reduction

Sample Type Serial Scatter-Gather (50 intervals) Speedup
WGS 30x 24 hours 30-45 minutes 32-48x
WGS 60x 48 hours 60-90 minutes 32-48x
WGS 100x 72 hours 90-120 minutes 36-48x

Assumes 50 parallel cores available

2. Better Resource Utilization

Traditional Approach:
Node 1: [====================] 100% utilized
Node 2: [ ] 0% utilized
Node 3: [ ] 0% utilized
Total Efficiency: 33%

Scatter-Gather Approach:
Node 1: [========] intervals 1-20
Node 2: [========] intervals 21-40
Node 3: [========] intervals 41-50
Total Efficiency: 90%+

3. Improved Fault Tolerance

Serial Processing:

Progress: [================X] CRASH
          ↓
          Start over from beginning
          Lost: 20 hours of work

Scatter-Gather:

Interval 15: [===X] FAILED
             ↓
             Re-run only interval 15
             Lost: 30 minutes of work

4. Flexible Scalability

10 cores  → 50 intervals → 2 hours
25 cores  → 50 intervals → 1 hour
50 cores  → 50 intervals → 30 minutes
100 cores → 50 intervals → 30 minutes (I/O bound)

Scale to match available infrastructure!

5. Memory Efficiency

Variant calling memory usage:

Genome Coverage Serial Memory Scatter Memory (per job)
30x WGS 64 GB 2-4 GB
60x WGS 96 GB 3-6 GB
100x WGS 128 GB 4-8 GB

Result: Can process high-coverage WGS on standard compute nodes

6. Better Queue Utilization

HPC schedulers prefer many small jobs over few large jobs:

  • Shorter queue times: Small jobs schedule faster
  • Better backfilling: Fills scheduler gaps efficiently
  • Higher priority: Many short jobs vs few long jobs

Implementation

Step 1: Generate Interval Lists

Using GATK SplitIntervals

gatk SplitIntervals \
  -R reference.fasta \
  -L regions.bed \
  --scatter-count 50 \
  --subdivision-mode BALANCING_WITHOUT_INTERVAL_SUBDIVISION \
  -O intervals/

Parameters:

  • --scatter-count: Number of intervals (typically 50-100)
  • --subdivision-mode: How to split
    • BALANCING_WITHOUT_INTERVAL_SUBDIVISION: Even distribution (recommended)
    • INTERVAL_SUBDIVISION: Can split single regions
    • BALANCING_WITHOUT_INTERVAL_SUBDIVISION_WITH_OVERFLOW: Handles remainder

Manual Interval Generation

# Create intervals by chromosome
for chr in {1..22} X Y; do
  echo "chr${chr}" > intervals/chr${chr}.bed
done

Step 2: Scatter (Parallel Variant Calling)

Using SLURM Array Jobs

#!/bin/bash
#SBATCH --job-name=variant_calling
#SBATCH --array=1-50          # 50 intervals
#SBATCH --cpus-per-task=2
#SBATCH --mem=8G
#SBATCH --time=2:00:00

# Get interval file for this array task
INTERVAL="intervals/interval_$(printf "%03d" $SLURM_ARRAY_TASK_ID).bed"

# Call variants on this interval
gatk HaplotypeCaller \
  -R reference.fasta \
  -I sample.bam \
  -L ${INTERVAL} \
  -O scatter/sample_interval_${SLURM_ARRAY_TASK_ID}.vcf

Job submission:

sbatch scatter_variant_calling.sh
# Launches 50 parallel jobs automatically

Using GNU Parallel

# Generate commands file
for i in {1..50}; do
  echo "gatk HaplotypeCaller -R ref.fa -I sample.bam \
    -L intervals/interval_${i}.bed \
    -O scatter/sample_interval_${i}.vcf"
done > commands.txt

# Execute in parallel
parallel -j 50 < commands.txt

Step 3: Gather (Merge Results)

Using GATK GatherVcfs

# Create input list
ls scatter/sample_interval_*.vcf > vcf_list.txt

# Merge VCFs
gatk GatherVcfs \
  -I vcf_list.txt \
  -O final/sample_complete.vcf.gz

Using bcftools concat

# Index all interval VCFs
for vcf in scatter/*.vcf; do
  bgzip -c $vcf > ${vcf}.gz
  tabix -p vcf ${vcf}.gz
done

# Concatenate in order
bcftools concat \
  scatter/sample_interval_*.vcf.gz \
  -O z \
  -o final/sample_complete.vcf.gz

# Index final VCF
tabix -p vcf final/sample_complete.vcf.gz

Performance Comparison

Real-World Benchmarks

30x WGS (Human Genome)

Method Intervals Cores Time Cost*
Serial 1 1 24 hours $24
Scatter-Gather 25 (chr) 25 1.5 hours $37.50
Scatter-Gather 50 50 45 minutes $37.50
Scatter-Gather 100 100 30 minutes $50

*Assuming $1/core-hour

Optimal: 50 intervals with 50 cores

  • Cost: ~50% increase
  • Time: 96% reduction
  • Result: Worth it for production workflows!

60x WGS (High Coverage)

Method Time Peak Memory
Serial 48 hours 96 GB
Scatter-Gather (50) 90 minutes 6 GB/job

Key Advantage: Fits on standard compute nodes!

Speedup Curves

Speedup vs Number of Intervals (30x WGS)

50x |                    ┌────────
    |                ┌───┘
40x |            ┌───┘
    |         ┌──┘
30x |      ┌──┘
    |   ┌──┘
20x | ┌─┘
    |─┘
10x |
    └─────┴─────┴─────┴─────┴─────┴────
      10    25    50    100   200   500
           Number of Intervals

Optimal: 50-100 intervals
Diminishing returns: >100 intervals (I/O bound)

Best Practices

1. Interval Size Selection

Guidelines:

  • WGS: 50-100 intervals
  • WES: 10-25 intervals (less data)
  • Targeted panels: 1-10 intervals

Calculate optimal intervals:

Optimal = Available Cores × 0.8
(Leave 20% overhead for I/O and gather)

Example: 64-core HPC → 50 intervals

2. Interval Boundaries

DO:

  • Use GATK SplitIntervals for even distribution
  • Respect gene boundaries for functional analyses
  • Include padding around intervals (100-200 bp)

DON'T:

  • Split in the middle of genes
  • Create overlapping intervals
  • Use uneven interval sizes

3. Resource Allocation

Per interval job:

#SBATCH --mem=4G          # Start with 4GB
#SBATCH --cpus-per-task=2 # 2 CPUs per task
#SBATCH --time=2:00:00    # 2 hours (buffer)

Adjust based on:

  • Coverage depth (↑ coverage → ↑ memory)
  • Variant density (high variation → more memory)
  • Tool used (HaplotypeCaller > Mutect2 > FreeBayes)

4. Handling Edge Cases

Problem: Variants at interval boundaries

Solution 1: Interval padding

gatk HaplotypeCaller \
  -L interval.bed \
  --interval-padding 100 \  # 100bp padding
  -O output.vcf

Solution 2: Overlapping intervals

Interval 1: [========>]
Interval 2:    [<========>]
Interval 3:       [<========]
               ^^^
            Overlap region

5. Quality Control

Check after gathering:

# 1. Verify all intervals present
expected=50
found=$(ls scatter/*.vcf | wc -l)
if [ $found -ne $expected ]; then
  echo "ERROR: Missing intervals!"
  exit 1
fi

# 2. Check final VCF integrity
bcftools stats final/sample.vcf.gz > stats.txt

# 3. Compare variant counts
total_scattered=$(grep "number of records" scatter/*stats | \
  awk '{sum+=$NF} END {print sum}')
total_gathered=$(bcftools view -H final/sample.vcf.gz | wc -l)

if [ $total_scattered -ne $total_gathered ]; then
  echo "WARNING: Variant count mismatch!"
fi

6. Error Handling

Implement retry logic:

#!/bin/bash
MAX_RETRIES=3
RETRY_COUNT=0

while [ $RETRY_COUNT -lt $MAX_RETRIES ]; do
  gatk HaplotypeCaller ... && break
  RETRY_COUNT=$((RETRY_COUNT + 1))
  echo "Retry $RETRY_COUNT of $MAX_RETRIES"
  sleep 60
done

if [ $RETRY_COUNT -eq $MAX_RETRIES ]; then
  echo "FAILED after $MAX_RETRIES attempts"
  exit 1
fi

Tools & Compatibility

Supported Variant Callers

Tool Scatter Support Gather Method Notes
GATK HaplotypeCaller ✅ Native GatherVcfs Recommended
GATK Mutect2 ✅ Native GatherVcfs Somatic calling
FreeBayes ✅ Manual bcftools concat Requires -L flag
DeepVariant ✅ Native concat/merge Built-in support
Strelka2 ✅ Manual Requires merging Region-based
DRAGEN ✅ Native Built-in Hardware accelerated

Workflow Managers

WDL (Workflow Description Language):

workflow ScatterGatherVC {
  scatter (interval in intervals) {
    call HaplotypeCaller {
      input: 
        bam = input_bam,
        interval = interval
    }
  }
  
  call GatherVcfs {
    input: vcfs = HaplotypeCaller.output_vcf
  }
}

Nextflow:

process haplotypeCaller {
  input:
  each interval from intervals_ch
  
  output:
  file "*.vcf" into vcf_ch
  
  script:
  """
  gatk HaplotypeCaller -L ${interval} ...
  """
}

process gatherVcfs {
  input:
  file vcfs from vcf_ch.collect()
  
  output:
  file "final.vcf"
  
  script:
  """
  gatk GatherVcfs -I ${vcfs} -O final.vcf
  """
}

Snakemake:

rule scatter:
    input:
        bam="sample.bam",
        interval="intervals/interval_{i}.bed"
    output:
        "scatter/interval_{i}.vcf"
    shell:
        "gatk HaplotypeCaller -L {input.interval} ..."

rule gather:
    input:
        expand("scatter/interval_{i}.vcf", i=range(1, 51))
    output:
        "final.vcf"
    shell:
        "gatk GatherVcfs -I {input} -O {output}"

Common Pitfalls

❌ Pitfall 1: Too Many Small Intervals

Problem:

1000 intervals × 2 minutes = 2000 minutes overhead
Result: Slower than serial!

Solution: Aim for 50-100 intervals (20-40 minutes each)

❌ Pitfall 2: Uneven Interval Sizes

Problem:

chr1: [====================] 4 hours
chr21: [===] 20 minutes
Total time: 4 hours (limited by longest)

Solution: Use BALANCING_WITHOUT_INTERVAL_SUBDIVISION mode

❌ Pitfall 3: Insufficient Memory Per Interval

Problem:

Process killed: Out of memory
Allocated: 4GB
Required: 8GB (high coverage region)

Solution:

  • Profile memory usage on test intervals
  • Add 50% buffer
  • Monitor peak memory in production

❌ Pitfall 4: Missing Variants at Boundaries

Problem:

Interval 1: [...===X|      ]  Variant at boundary
Interval 2: [      |===... ]  Same variant
Result: Variant called twice or missed!

Solution: Use interval padding (100-200 bp)

❌ Pitfall 5: Not Validating Gathered Output

Problem:

Expected: 4,500,000 variants
Got:      4,499,850 variants
Missing:  150 variants (from failed interval)

Solution: Always validate:

  • Interval completion
  • Variant counts
  • VCF integrity
  • File checksums

Example Workflows

Complete WGS Variant Calling Pipeline

#!/bin/bash
# Complete scatter-gather WGS variant calling pipeline

set -euo pipefail

# Configuration
SAMPLE="SampleX"
BAM="input/${SAMPLE}.bam"
REF="reference/hg38.fa"
INTERVALS_DIR="intervals"
SCATTER_DIR="scatter"
FINAL_DIR="final"
N_INTERVALS=50

# Step 0: Setup
mkdir -p ${INTERVALS_DIR} ${SCATTER_DIR} ${FINAL_DIR}

# Step 1: Generate intervals
echo "Generating ${N_INTERVALS} intervals..."
gatk SplitIntervals \
  -R ${REF} \
  --scatter-count ${N_INTERVALS} \
  --subdivision-mode BALANCING_WITHOUT_INTERVAL_SUBDIVISION \
  -O ${INTERVALS_DIR}

# Step 2: Scatter - Launch parallel jobs
echo "Launching ${N_INTERVALS} parallel variant calling jobs..."
for i in $(seq -f "%04g" 1 ${N_INTERVALS}); do
  INTERVAL="${INTERVALS_DIR}/${i}-scattered.interval_list"
  OUTPUT="${SCATTER_DIR}/${SAMPLE}_${i}.vcf"
  
  sbatch --job-name=vc_${i} \
         --mem=8G \
         --cpus-per-task=2 \
         --time=2:00:00 \
         --output=logs/vc_${i}.log \
         --wrap="gatk HaplotypeCaller \
                   -R ${REF} \
                   -I ${BAM} \
                   -L ${INTERVAL} \
                   -O ${OUTPUT}"
done

# Step 3: Wait for all jobs to complete
echo "Waiting for variant calling jobs to complete..."
while [ $(squeue -u $USER -n vc_ -h | wc -l) -gt 0 ]; do
  sleep 60
  echo "Jobs remaining: $(squeue -u $USER -n vc_ -h | wc -l)"
done

# Step 4: Validate all intervals completed
echo "Validating interval completion..."
EXPECTED=${N_INTERVALS}
COMPLETED=$(ls ${SCATTER_DIR}/*.vcf | wc -l)

if [ ${COMPLETED} -ne ${EXPECTED} ]; then
  echo "ERROR: Expected ${EXPECTED} VCFs, found ${COMPLETED}"
  exit 1
fi

# Step 5: Gather - Merge VCFs
echo "Gathering VCFs..."
ls ${SCATTER_DIR}/*.vcf > vcf_list.txt

gatk GatherVcfs \
  -I vcf_list.txt \
  -O ${FINAL_DIR}/${SAMPLE}.vcf.gz

# Step 6: Index final VCF
echo "Indexing final VCF..."
tabix -p vcf ${FINAL_DIR}/${SAMPLE}.vcf.gz

# Step 7: Generate statistics
echo "Generating statistics..."
bcftools stats ${FINAL_DIR}/${SAMPLE}.vcf.gz > ${FINAL_DIR}/${SAMPLE}.stats.txt

# Step 8: Quality control
echo "Running QC checks..."
TOTAL_VARIANTS=$(bcftools view -H ${FINAL_DIR}/${SAMPLE}.vcf.gz | wc -l)
echo "Total variants called: ${TOTAL_VARIANTS}"

if [ ${TOTAL_VARIANTS} -lt 3000000 ]; then
  echo "WARNING: Low variant count (expected ~3-5M for WGS)"
fi

echo "Pipeline complete!"
echo "Final VCF: ${FINAL_DIR}/${SAMPLE}.vcf.gz"

Advanced Topics

Dynamic Interval Adjustment

Adjust intervals based on genomic features:

# Increase intervals in high-variation regions
HIGH_VAR_REGIONS="MHC, HLA, KIR"  # Immune regions
LOW_VAR_REGIONS="deserts"         # Gene deserts

# 2x density in high-variation regions
gatk SplitIntervals \
  -R reference.fa \
  -L ${HIGH_VAR_REGIONS} \
  --scatter-count 100 \
  -O intervals/high_var/

gatk SplitIntervals \
  -R reference.fa \
  -XL ${HIGH_VAR_REGIONS} \
  --scatter-count 50 \
  -O intervals/standard/

Heterogeneous Computing

Distribute intervals by complexity:

Simple intervals   → Low-memory nodes  (2 GB)
Complex intervals  → High-memory nodes (16 GB)
# Classify intervals by expected memory
for interval in intervals/*.bed; do
  coverage=$(calculate_coverage ${interval})
  
  if [ ${coverage} -gt 100 ]; then
    # High coverage → high memory
    sbatch --mem=16G variant_call.sh ${interval}
  else
    # Standard coverage → standard memory
    sbatch --mem=4G variant_call.sh ${interval}
  fi
done

Troubleshooting

Issue: Jobs Timing Out

Symptoms:

Job exceeded time limit
Killed at: 1:59:59 / 2:00:00

Solutions:

  1. Increase time limit
  2. Reduce interval size (more intervals)
  3. Profile long-running intervals

Issue: Memory Errors

Symptoms:

java.lang.OutOfMemoryError: Java heap space

Solutions:

# Increase Java heap
--java-options "-Xmx6G"

# Increase job memory
#SBATCH --mem=8G

# Monitor actual usage:
sacct -j JOBID --format=MaxRSS

Issue: Inconsistent Results

Symptoms:

Scattered: 4,500,000 variants
Gathered:  4,499,500 variants
Missing:   500 variants

Debug:

# Check for failed intervals
for i in {1..50}; do
  if [ ! -f scatter/interval_${i}.vcf ]; then
    echo "Missing: interval ${i}"
  fi
done

# Validate each interval VCF
for vcf in scatter/*.vcf; do
  gatk ValidateVariants -V ${vcf} -R reference.fa || echo "Invalid: ${vcf}"
done

Performance Metrics

Measuring Efficiency

Speedup Factor:

Speedup = Serial Time / Parallel Time

Example:
Serial: 24 hours
Parallel: 45 minutes
Speedup = 24 * 60 / 45 = 32x

Efficiency:

Efficiency = Speedup / Number of Cores

Example:
Speedup: 32x
Cores: 50
Efficiency = 32 / 50 = 0.64 (64%)

Target: >60% efficiency is good for WGS

Monitoring

# Track job progress
watch -n 10 'squeue -u $USER | grep vc_'

# Monitor resource usage
sstat -j JOBID --format=AveCPU,MaxRSS,AveVMSize

# Post-job analysis
sacct -j JOBID --format=JobID,MaxRSS,Elapsed,State

Real-World Case Studies

Case Study : Cancer Genomics

Setup:

  • Tumor/normal pairs (60x coverage)
  • Need same-day results for treatment decisions

Challenge:

60x tumor:  48 hours serial
60x normal: 48 hours serial
Total:      96 hours (4 days) - UNACCEPTABLE

Solution:

Scatter-gather (100 intervals, 100 cores):
Tumor:   60 minutes
Normal:  60 minutes
Total:   120 minutes (2 hours) ✓

Plus analysis time: 4 hours
Total turnaround:   6 hours (same day)

Outcome: Enabled precision medicine in clinical workflow


Future Directions

GPU Acceleration

Traditional CPU: 50 intervals × 45 minutes = 37.5 hours compute
GPU-accelerated: Single GPU = 15 minutes

Example: NVIDIA Parabricks
- ~80x faster than CPU
- Higher cost per hour, but total cost lower
- Best for ultra-high throughput

Machine Learning Optimization

ML Model: Predict optimal interval size based on:
- Coverage distribution
- Variant density
- Reference complexity

Result: Dynamic interval generation
        → Better load balancing
        → 20-30% additional speedup

Conclusion

Key Takeaways

Scatter-gather is essential for WGS in production environments

30-50x speedup with proper implementation

Better resource utilization on HPC clusters

Enables clinical turnaround times (hours instead of days)

Cost-effective for high-throughput projects

When to Use Scatter-Gather

Use Case Recommendation
Single WGS sample Optional (convenience)
10+ WGS samples Recommended
Clinical workflow Essential
Population studies (1000+) Essential
Time-sensitive Essential

Getting Started

  1. Start small: Test with 10-25 intervals
  2. Profile your data: Measure time/memory per interval
  3. Scale up: Optimize interval count for your infrastructure
  4. Automate: Use workflow managers (Nextflow, Snakemake, WDL)
  5. Monitor: Track efficiency and optimize

Resources

Documentation

Tools

  • GATK: Variant calling suite
  • Picard: VCF manipulation
  • BCFtools: VCF processing
  • Hail: Large-scale genomics (Python/Spark)

Communities

Publications

  1. McKenna et al. (2010). "The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data." Genome Research
  2. Poplin et al. (2018). "Scaling accurate genetic variant discovery to tens of thousands of samples." bioRxiv
  3. Van der Auwera & O'Connor (2020). "Genomics in the Cloud." O'Reilly Media

Citation

If you use scatter-gather approaches in your research, please cite:

@article{mckenna2010genome,
  title={The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data},
  author={McKenna, Aaron and Hanna, Matthew and Banks, Eric and others},
  journal={Genome research},
  volume={20},
  number={9},
  pages={1297--1303},
  year={2010}
}

Contributing

Contributions are welcome! Please submit issues or pull requests.

Areas for Contribution

  • Additional workflow examples
  • Cloud platform integrations
  • Performance benchmarks
  • Tool-specific implementations

License

This documentation is provided under the MIT License. See LICENSE file for details.


Acknowledgments

  • GATK team at Broad Institute
  • HPC communities worldwide
  • Bioinformatics researchers advancing parallel genomics

Last Updated: November 2025
Version: 1.0
Maintainers: Bioinformatics Community


Quick Reference Card

┌─────────────────────────────────────────────────────────┐
│            SCATTER-GATHER QUICK REFERENCE               │
├─────────────────────────────────────────────────────────┤
│                                                          │
│  Optimal Intervals:     50-100 for WGS                  │
│  Memory per job:        4-8 GB                          │
│  Time per interval:     20-40 minutes                   │
│  Expected speedup:      30-50x                          │
│                                                          │
│  SCATTER:    gatk SplitIntervals --scatter-count 50     │
│  PROCESS:    parallel variant calling (array jobs)      │
│  GATHER:     gatk GatherVcfs or bcftools concat         │
│                                                          │
│  Always:     - Validate completion                      │
│              - Check variant counts                     │
│              - Use interval padding                     │
│              - Monitor resource usage                   │
│                                                          │
└─────────────────────────────────────────────────────────┘

END OF DOCUMENT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages