Skip to content

a6his/ml-crop-recommender

Repository files navigation

# 🌱MLCrop Recommender - A Crop Recommendation System

This project implements a **Crop Recommendation System** that suggests suitable crops based on environmental conditions (e.g., **nitrogen**, **phosphorus**, **potassium**, **temperature**, **humidity**, **pH**, and **rainfall**).  
It compares the performance of multiple machine learning models to identify the best-performing approach.

---

## πŸš€ Features

βœ… **Crop recommendation based on soil and climate data**  
βœ… **Comparison of multiple ML algorithms:**  
- 🌳 **Random Forest**  
- 🌲 **Decision Tree**  
- πŸ“Œ **K-Nearest Neighbors (KNN)**  
- πŸ“ˆ **Support Vector Machine (SVM)**  
- πŸ”‘ **Logistic Regression**  
- πŸ•Š **Naive Bayes**  
- ⚑ **XGBoost**  
- πŸ€– **Multi-Layer Perceptron (MLPClassifier)**  

βœ… **Model evaluation metrics:**  
- 🎯 **Accuracy**  
- πŸ“Š **Precision**  
- πŸ”„ **Recall**  
- 🧠 **F1 Score**  
- πŸš€ **AUC-ROC**  
- πŸ“‰ **Log Loss**  

βœ… **Flask web interface** for user-friendly crop prediction  

---

## πŸ’» Tech Stack

- **Python**
- **Flask**
- **Scikit-learn**
- **XGBoost**
- **Pandas**
- **NumPy**

### Dissertation work submitted as a part of MCA degree by **Abhiram Swarnatt 23PCOMP001**
---

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published