SoleLogics.jl provides a fresh codebase for computational logic, featuring easy manipulation of:
- Propositional and (multi)modal logics (atoms, logical constants, alphabets, grammars, crisp/fuzzy algebras);
- Logical formulas (parsing, random generation, minimization);
- Logical interpretations (e.g., propositional valuations, Kripke structures);
- Algorithms for finite model checking, that is, checking that a formula is satisfied by an interpretation.
using Pkg; Pkg.add("SoleLogics")
using SoleLogicsjulia> φ1 = parseformula("¬p∧q∨(s∨z)")
SyntaxBranch: (¬p ∧ q) ∨ s ∨ z
julia> syntaxstring(φ1; parenthesize_commutatives = true)
"(¬p ∧ q) ∨ (s ∨ z)"
julia> filter(ψ -> height(ψ) == 1, subformulas(φ1))
2-element Vector{SyntaxTree}:
SyntaxBranch: ¬p
SyntaxBranch: s ∨ z
julia> filter(ψ -> natoms(ψ) == 1, subformulas(φ1))
5-element Vector{SyntaxTree}:
Atom{String}: p
Atom{String}: q
Atom{String}: s
Atom{String}: z
SyntaxBranch: ¬p
julia> φ2 = ⊥ ∨ Atom("t") → φ1
SyntaxBranch: ⊥ ∨ t → (¬p ∧ q) ∨ s ∨ zjulia> using Random
julia> height = 2;
julia> alphabet = @atoms p q
2-element Vector{Atom{String}}:
Atom{String}: p
Atom{String}: q
julia> # A propositional formula
SoleLogics.BASE_PROPOSITIONAL_CONNECTIVES
4-element Vector{NamedConnective}:
¬
∧
∨
→
julia> randformula(Random.MersenneTwister(507), height, alphabet, SoleLogics.BASE_PROPOSITIONAL_CONNECTIVES)
SyntaxBranch: p → q ∧ q
julia> # A modal formula
SoleLogics.BASE_MODAL_CONNECTIVES
6-element Vector{NamedConnective}:
¬
∧
∨
→
◊
□
julia> randformula(Random.MersenneTwister(4267), height, alphabet, SoleLogics.BASE_MODAL_CONNECTIVES)
SyntaxBranch: ◊□pjulia> φ1 = parseformula("¬(p ∧ q)")
SyntaxBranch: ¬(p ∧ q)
julia> I = TruthDict(["p" => true, "q" => false])
TruthDict with values:
┌────────┬────────┐
│ q │ p │
│ String │ String │
├────────┼────────┤
│ ⊥ │ ⊤ │
└────────┴────────┘
julia> check(φ1, I)
⊤
julia> φ2 = parseformula("¬(p ∧ q) ∧ (r ∨ q)")
SyntaxBranch: ¬(p ∧ q)
julia> interpret(φ2, I)
Atom{String}: r
See an introduction to modal logic K here.
julia> using Graphs
julia> # Instantiate a Kripke frame with 5 worlds and 5 edges
worlds = World.(1:5);
julia> edges = Edge.([(1,2), (1,3), (2,4), (3,4), (3,5)]);
julia> fr = SimpleModalFrame(worlds, Graphs.SimpleDiGraph(edges))
SimpleModalFrame{World{Int64}, SimpleDiGraph{Int64}} with 5 worlds:
- worlds: [1, 2, 3, 4, 5]
- accessibles:
1 -> [2, 3]
2 -> [4]
3 -> [4, 5]
4 -> []
5 -> []
julia> # Enumerate the world that are accessible from the first world
accessibles(fr, first(worlds))
2-element Vector{World{Int64}}:
World{Int64}(2)
World{Int64}(3)
julia> @atoms p q
julia> # Assign each world a propositional interpretation
valuation = Dict([
worlds[1] => TruthDict([p => true, q => false]),
worlds[2] => TruthDict([p => true, q => true]),
worlds[3] => TruthDict([p => true, q => false]),
worlds[4] => TruthDict([p => false, q => false]),
worlds[5] => TruthDict([p => false, q => true]),
]);
julia> # Instantiate a Kripke structure by combining a Kripke frame and the propositional interpretations over each world
K = KripkeStructure(fr, valuation);
julia> # Generate a modal formula
φ = parseformula("◊(p ∧ q)");
julia> # Check the just generated formula on each world of the Kripke structure
[w => check(φ, K, w) for w in worlds]
5-element Vector{Pair{World{Int64}, Bool}}:
World{Int64}(1) => 1
World{Int64}(2) => 0
World{Int64}(3) => 0
World{Int64}(4) => 0
World{Int64}(5) => 0julia> # A frame consisting of 10 (evenly spaced) points
fr = FullDimensionalFrame((10,), Point{1, Int64});
julia> # Linear Temporal Logic (LTL) `successor` relation
accessibles(fr, Point(3), SoleLogics.SuccessorRel) |> collect
1-element Vector{Point{1, Int64}}:
❮4❯
julia> # Linear Temporal Logic (LTL) `greater than` relation
accessibles(fr, Point(3), SoleLogics.GreaterRel) |> collect
7-element Vector{Point{1, Int64}}:
❮4❯
❮5❯
❮6❯
❮7❯
❮8❯
❮9❯
❮10❯
julia> # An interval frame consisting of all intervals over 10 (evenly spaced) points
fr = FullDimensionalFrame((10, ), Interval{Int64});
julia> # Interval Algebra (IA) relation `L` (later, see [Halpern & Shoham, 1991](https://dl.acm.org/doi/abs/10.1145/115234.115351))
accessibles(fr, Interval(3, 5), IA_L) |> collect
15-element Vector{Interval{Int64}}:
Interval{Int64}(6, 7)
Interval{Int64}(6, 8)
Interval{Int64}(7, 8)
Interval{Int64}(6, 9)
Interval{Int64}(7, 9)
Interval{Int64}(8, 9)
Interval{Int64}(6, 10)
Interval{Int64}(7, 10)
Interval{Int64}(8, 10)
Interval{Int64}(9, 10)
Interval{Int64}(6, 11)
Interval{Int64}(7, 11)
Interval{Int64}(8, 11)
Interval{Int64}(9, 11)
Interval{Int64}(10, 11)
julia> # Region Connection Calculus relation `DC` (disconnected, see [Cohn et al., 1997](https://link.springer.com/article/10.1023/A:1009712514511))
accessibles(fr, Interval(3, 5), Topo_DC) |> collect
16-element Vector{Interval{Int64}}:
Interval{Int64}(6, 7)
Interval{Int64}(6, 8)
Interval{Int64}(7, 8)
Interval{Int64}(6, 9)
Interval{Int64}(7, 9)
Interval{Int64}(8, 9)
Interval{Int64}(6, 10)
Interval{Int64}(7, 10)
Interval{Int64}(8, 10)
Interval{Int64}(9, 10)
Interval{Int64}(6, 11)
Interval{Int64}(7, 11)
Interval{Int64}(8, 11)
Interval{Int64}(9, 11)
Interval{Int64}(10, 11)
Interval{Int64}(1, 2)SoleLogics.jl lays the logical foundations for Sole.jl, an open-source framework for symbolic machine learning, originally designed for machine learning based on modal logics (see Eduard I. Stan's PhD thesis 'Foundations of Modal Symbolic Learning' here).
The package is developed by the ACLAI Lab @ University of Ferrara.
Thanks to Jakob Peters (author of PAndQ.jl) for the interesting discussions and ideas.
We have some TODOs
