Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/Data/Digit.agda
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ toNatDigits base@(suc (suc _)) n = aux (<-wellFounded-fast n) []
aux {zero} _ xs = (0 ∷ xs)
aux {n@(suc _)} (acc wf) xs with does (0 <? n / base)
... | false = (n % base) ∷ xs -- Could this more simply be n ∷ xs here?
... | true = aux (wf (m/n<m n base sz<ss)) ((n % base) ∷ xs)
... | true = aux (wf (m/n<m n base)) ((n % base) ∷ xs)

------------------------------------------------------------------------
-- Converting between `ℕ` and expansions of `Digit base`
Expand Down
61 changes: 35 additions & 26 deletions src/Data/Nat/DivMod.agda
Original file line number Diff line number Diff line change
Expand Up @@ -203,12 +203,13 @@ m/n≤m m n = *-cancelʳ-≤ (m / n) m n (begin
m ≤⟨ m≤m*n m n ⟩
m * n ∎)

m/n<m : ∀ m n .{{_ : NonZero m}} .{{_ : NonZero n}} →
1 < n → m / n < m
m/n<m m n 1<n = *-cancelʳ-< _ (m / n) m $ begin-strict
m/n<m : ∀ m n .{{_ : NonZero m}} .{{_ : NonTrivial n}} →
let instance _ = nonTrivial⇒nonZero n in m / n < m
m/n<m m n = *-cancelʳ-< _ (m / n) m $ begin-strict
m / n * n ≤⟨ m/n*n≤m m n ⟩
m <⟨ m<m*n m n 1<n
m <⟨ m<m*n m n (nonTrivial⇒n>1 n)
m * n ∎
where instance _ = nonTrivial⇒nonZero n

/-mono-≤ : .{{_ : NonZero o}} .{{_ : NonZero p}} →
m ≤ n → o ≥ p → m / o ≤ n / p
Expand Down Expand Up @@ -239,13 +240,13 @@ m≥n⇒m/n>0 {m@(suc _)} {n@(suc _)} m≥n = begin
m / n ∎

m/n≡0⇒m<n : ∀ {m n} .{{_ : NonZero n}} → m / n ≡ 0 → m < n
m/n≡0⇒m<n {m} {n@(suc _)} m/n≡0 with <-≤-connex m n
m/n≡0⇒m<n {m} {n} m/n≡0 with <-≤-connex m n
... | inj₁ m<n = m<n
... | inj₂ n≤m = contradiction m/n≡0 (≢-nonZero⁻¹ _)
where instance _ = >-nonZero (m≥n⇒m/n>0 n≤m)

m/n≢0⇒n≤m : ∀ {m n} .{{_ : NonZero n}} → m / n ≢ 0 → n ≤ m
m/n≢0⇒n≤m {m} {n@(suc _)} m/n≢0 with <-≤-connex m n
m/n≢0⇒n≤m {m} {n} m/n≢0 with <-≤-connex m n
... | inj₁ m<n = contradiction (m<n⇒m/n≡0 m<n) m/n≢0
... | inj₂ n≤m = n≤m

Expand Down Expand Up @@ -307,15 +308,15 @@ m∣n⇒o%n%m≡o%m m n@.(p * m) o (divides-refl p) = begin-equality
o / pm * pm ≤⟨ m/n*n≤m o pm ⟩
o ∎

m*n/m*o≡n/o : ∀ m n o .{{_ : NonZero o}} .{{_ : NonZero (m * o)}} →
m*n/m*o≡n/o : ∀ m n o .{{_ : NonZero m}} .{{_ : NonZero o}} →
let instance _ = m*n≢0 m o in
(m * n) / (m * o) ≡ n / o
m*n/m*o≡n/o m n o = helper (<-wellFounded n)
where
instance _ = m*n≢0 m o
helper : ∀ {n} → Acc _<_ n → (m * n) / (m * o) ≡ n / o
helper {n} (acc rec) with <-≤-connex n o
... | inj₁ n<o = trans (m<n⇒m/n≡0 (*-monoʳ-< m n<o)) (sym (m<n⇒m/n≡0 n<o))
where instance _ = m*n≢0⇒m≢0 m
... | inj₂ n≥o = begin-equality
(m * n) / (m * o) ≡⟨ m/n≡1+[m∸n]/n (*-monoʳ-≤ m n≥o) ⟩
1 + (m * n ∸ m * o) / (m * o) ≡⟨ cong (suc ∘ (_/ (m * o))) (*-distribˡ-∸ m n o) ⟨
Expand All @@ -324,17 +325,17 @@ m*n/m*o≡n/o m n o = helper (<-wellFounded n)
n / o ∎
where n∸o<n = ∸-monoʳ-< (n≢0⇒n>0 (≢-nonZero⁻¹ o)) n≥o

m*n/o*n≡m/o : ∀ m n o .{{_ : NonZero o}} .{{_ : NonZero (o * n)}} →
m*n/o*n≡m/o : ∀ m n o .{{_ : NonZero n}} .{{_ : NonZero o}} →
let instance _ = m*n≢0 o n in
m * n / (o * n) ≡ m / o
m*n/o*n≡m/o m n o = begin-equality
m * n / (o * n) ≡⟨ /-congˡ (*-comm m n) ⟩
m * n / (o * n) ≡⟨ /-congˡ {{o*n≢0}} (*-comm m n) ⟩
n * m / (o * n) ≡⟨ /-congʳ (*-comm o n) ⟩
n * m / (n * o) ≡⟨ m*n/m*o≡n/o n m o ⟩
m / o ∎
where instance
_ : NonZero n
_ = m*n≢0⇒n≢0 o
_ : NonZero (n * o)
o*n≢0 : NonZero (o * n)
o*n≢0 = m*n≢0 o n
_ = m*n≢0 n o

m<n*o⇒m/o<n : ∀ {m n o} .{{_ : NonZero o}} → m < n * o → m / o < n
Expand All @@ -357,8 +358,9 @@ m<n*o⇒m/o<n {m} {suc n@(suc _)} {o} m<n*o = pred-cancel-< $ begin-strict
m / o ∸ 1 ∸ n ≡⟨ ∸-+-assoc (m / o) 1 n ⟩
m / o ∸ suc n ∎

m/n/o≡m/[n*o] : ∀ m n o .{{_ : NonZero n}} .{{_ : NonZero o}}
.{{_ : NonZero (n * o)}} → m / n / o ≡ m / (n * o)
m/n/o≡m/[n*o] : ∀ m n o .{{_ : NonZero n}} .{{_ : NonZero o}} →
let instance _ = m*n≢0 n o in
m / n / o ≡ m / (n * o)
m/n/o≡m/[n*o] m n o = begin-equality
m / n / o ≡⟨ /-congˡ {o = o} (/-congˡ (m≡m%n+[m/n]*n m n*o)) ⟩
(m % n*o + m / n*o * n*o) / n / o ≡⟨ /-congˡ (+-distrib-/-∣ʳ (m % n*o) lem₁) ⟩
Expand All @@ -370,6 +372,8 @@ m/n/o≡m/[n*o] m n o = begin-equality
where
n*o = n * o
o*n = o * n
instance
_ = m*n≢0 n o

lem₁ : n ∣ m / n*o * n*o
lem₁ = divides (m / n*o * o) $ begin-equality
Expand Down Expand Up @@ -397,10 +401,11 @@ m/n/o≡m/[n*o] m n o = begin-equality
n / d + (m * n) / d ≡⟨ cong (n / d +_) (*-/-assoc m d∣n) ⟩
n / d + m * (n / d) ∎

/-*-interchange : .{{_ : NonZero o}} .{{_ : NonZero p}} .{{_ : NonZero (o * p)}} →
o ∣ m → p ∣ n → (m * n) / (o * p) ≡ (m / o) * (n / p)
/-*-interchange : .{{_ : NonZero o}} .{{_ : NonZero p}} →
let instance _ = m*n≢0 o p in o ∣ m → p ∣ n →
(m * n) / (o * p) ≡ (m / o) * (n / p)
/-*-interchange {o} {p} {m@.(q * o)} {n@.(r * p)} (divides-refl q) (divides-refl r)
= begin-equality
= let instance _ = m*n≢0 o p in begin-equality
(m * n) / (o * p) ≡⟨⟩
q * o * (r * p) / (o * p) ≡⟨ /-congˡ ([m*n]*[o*p]≡[m*o]*[n*p] q o r p) ⟩
q * r * (o * p) / (o * p) ≡⟨ m*n/n≡m (q * r) (o * p) ⟩
Expand All @@ -411,13 +416,11 @@ m/n/o≡m/[n*o] m n o = begin-equality
m*n/m!≡n/[m∸1]! : ∀ m n .{{_ : NonZero m}} →
let instance _ = m !≢0 ; instance _ = (pred m) !≢0 in
(m * n / m !) ≡ (n / (pred m) !)
m*n/m!≡n/[m∸1]! m′@(suc m) n = m*n/m*o≡n/o m′ n (m !)
where instance
_ = m !≢0
_ = m′ !≢0
m*n/m!≡n/[m∸1]! m′@(suc m) n = let instance _ = m !≢0 in m*n/m*o≡n/o m′ n (m !)

m%[n*o]/o≡m/o%n : ∀ m n o .{{_ : NonZero n}} .{{_ : NonZero o}} →
{{_ : NonZero (n * o)}} → m % (n * o) / o ≡ m / o % n
let instance _ = m*n≢0 n o in
m % (n * o) / o ≡ m / o % n
m%[n*o]/o≡m/o%n m n o = begin-equality
m % (n * o) / o ≡⟨ /-congˡ (m%n≡m∸m/n*n m (n * o)) ⟩
(m ∸ (m / (n * o) * (n * o))) / o ≡⟨ cong (λ # → (m ∸ #) / o) (*-assoc (m / (n * o)) n o) ⟨
Expand All @@ -426,9 +429,12 @@ m%[n*o]/o≡m/o%n m n o = begin-equality
m / o ∸ m / (o * n) * n ≡⟨ cong (λ # → m / o ∸ # * n) (m/n/o≡m/[n*o] m o n ) ⟨
m / o ∸ m / o / n * n ≡⟨ m%n≡m∸m/n*n (m / o) n ⟨
m / o % n ∎
where instance _ = m*n≢0 o n
where instance
_ = m*n≢0 n o
_ = m*n≢0 o n

m%n*o≡m*o%[n*o] : ∀ m n o .{{_ : NonZero n}} .{{_ : NonZero (n * o)}} →
m%n*o≡m*o%[n*o] : ∀ m n o .{{_ : NonZero n}} .{{_ : NonZero o}} →
let instance _ = m*n≢0 n o in
m % n * o ≡ m * o % (n * o)
m%n*o≡m*o%[n*o] m n o = begin-equality
m % n * o ≡⟨ cong (_* o) (m%n≡m∸m/n*n m n) ⟩
Expand All @@ -437,8 +443,10 @@ m%n*o≡m*o%[n*o] m n o = begin-equality
m * o ∸ m * o / (n * o) * n * o ≡⟨ cong (m * o ∸_) (*-assoc (m * o / (n * o)) n o) ⟩
m * o ∸ m * o / (n * o) * (n * o) ≡⟨ m%n≡m∸m/n*n (m * o) (n * o) ⟨
m * o % (n * o) ∎
where instance _ = m*n≢0 n o

[m*n+o]%[p*n]≡[m*n]%[p*n]+o : ∀ m {n o} p .{{_ : NonZero (p * n)}} → o < n →
[m*n+o]%[p*n]≡[m*n]%[p*n]+o : ∀ m {n o} p .{{_ : NonZero n}} .{{_ : NonZero p}} →
let instance _ = m*n≢0 p n in o < n →
(m * n + o) % (p * n) ≡ (m * n) % (p * n) + o
[m*n+o]%[p*n]≡[m*n]%[p*n]+o m {n} {o} p@(suc p-1) o<n = begin-equality
(mn + o) % pn ≡⟨ %-distribˡ-+ mn o pn ⟩
Expand All @@ -448,6 +456,7 @@ m%n*o≡m*o%[n*o] m n o = begin-equality
where
mn = m * n
pn = p * n
instance _ = m*n≢0 p n

lem₁ : mn % pn ≤ p-1 * n
lem₁ = begin
Expand Down