-
Notifications
You must be signed in to change notification settings - Fork 260
Add ideals and quotient rings #2855
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: quotient-groups
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| @@ -0,0 +1,89 @@ | ||||||||||||||||||||||||
| ------------------------------------------------------------------------ | ||||||||||||||||||||||||
| -- The Agda standard library | ||||||||||||||||||||||||
| -- | ||||||||||||||||||||||||
| -- Quotient rings | ||||||||||||||||||||||||
| ------------------------------------------------------------------------ | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| {-# OPTIONS --safe --cubical-compatible #-} | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| open import Algebra.Bundles using (Ring; RawRing) | ||||||||||||||||||||||||
| open import Algebra.Ideal using (Ideal) | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| module Algebra.Construct.Quotient.Ring {c ℓ} (R : Ring c ℓ) {c′ ℓ′} (I : Ideal R c′ ℓ′) where | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| open import Algebra.Morphism.Structures using (IsRingHomomorphism) | ||||||||||||||||||||||||
| open import Algebra.Properties.Ring R | ||||||||||||||||||||||||
| open import Algebra.Structures | ||||||||||||||||||||||||
| open import Level | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| open Ring R | ||||||||||||||||||||||||
| private module I = Ideal I | ||||||||||||||||||||||||
| open I using (ι; normalSubgroup) | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| open import Algebra.Construct.Quotient.Group +-group normalSubgroup public | ||||||||||||||||||||||||
| using (_≋_; _by_; ≋-refl; ≋-sym; ≋-trans; ≋-isEquivalence; ≈⇒≋; quotientIsGroup; quotientGroup; π; π-surjective) | ||||||||||||||||||||||||
| renaming (≋-∙-cong to ≋-+-cong; ≋-⁻¹-cong to ≋‿-‿cong) | ||||||||||||||||||||||||
| open import Algebra.Definitions _≋_ | ||||||||||||||||||||||||
| open import Algebra.Properties.Semiring semiring | ||||||||||||||||||||||||
| open import Relation.Binary.Reasoning.Setoid setoid | ||||||||||||||||||||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ditto. should this be part of the API exported by |
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| ≋-*-cong : Congruent₂ _*_ | ||||||||||||||||||||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I would be tempted to use a local module (I forget the syntax for doing just inside the proof part) where |
||||||||||||||||||||||||
| ≋-*-cong {x} {y} {u} {v} (j by ιj+x≈y) (k by ιk+u≈v) = ι j I.*ₗ k I.+ᴹ j I.*ᵣ u I.+ᴹ x I.*ₗ k by begin | ||||||||||||||||||||||||
| ι (ι j I.*ₗ k I.+ᴹ j I.*ᵣ u I.+ᴹ x I.*ₗ k) + x * u ≈⟨ +-congʳ (ι.+ᴹ-homo (ι j I.*ₗ k I.+ᴹ j I.*ᵣ u) (x I.*ₗ k)) ⟩ | ||||||||||||||||||||||||
| ι (ι j I.*ₗ k I.+ᴹ j I.*ᵣ u) + ι (x I.*ₗ k) + x * u ≈⟨ +-congʳ (+-congʳ (ι.+ᴹ-homo (ι j I.*ₗ k) (j I.*ᵣ u))) ⟩ | ||||||||||||||||||||||||
| ι (ι j I.*ₗ k) + ι (j I.*ᵣ u) + ι (x I.*ₗ k) + x * u ≈⟨ +-congʳ (+-cong (+-cong (ι.*ₗ-homo (ι j) k) (ι.*ᵣ-homo u j)) (ι.*ₗ-homo x k)) ⟩ | ||||||||||||||||||||||||
| ι j * ι k + ι j * u + x * ι k + x * u ≈⟨ binomial-expansion (ι j) x (ι k) u ⟨ | ||||||||||||||||||||||||
| (ι j + x) * (ι k + u) ≈⟨ *-cong ιj+x≈y ιk+u≈v ⟩ | ||||||||||||||||||||||||
| y * v ∎ | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| quotientRawRing : RawRing c (c ⊔ ℓ ⊔ c′) | ||||||||||||||||||||||||
| quotientRawRing = record | ||||||||||||||||||||||||
| { Carrier = Carrier | ||||||||||||||||||||||||
| ; _≈_ = _≋_ | ||||||||||||||||||||||||
| ; _+_ = _+_ | ||||||||||||||||||||||||
| ; _*_ = _*_ | ||||||||||||||||||||||||
| ; -_ = -_ | ||||||||||||||||||||||||
| ; 0# = 0# | ||||||||||||||||||||||||
| ; 1# = 1# | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
|
Comment on lines
+41
to
+48
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
avoids redundant DRY ...? |
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| quotientIsRing : IsRing _≋_ _+_ _*_ (-_) 0# 1# | ||||||||||||||||||||||||
| quotientIsRing = record | ||||||||||||||||||||||||
| { +-isAbelianGroup = record | ||||||||||||||||||||||||
| { isGroup = quotientIsGroup | ||||||||||||||||||||||||
| ; comm = λ x y → ≈⇒≋ (+-comm x y) | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
|
Comment on lines
+53
to
+55
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Don't need to create, nor import,
Suggested change
|
||||||||||||||||||||||||
| ; *-cong = ≋-*-cong | ||||||||||||||||||||||||
| ; *-assoc = λ x y z → ≈⇒≋ (*-assoc x y z) | ||||||||||||||||||||||||
| ; *-identity = record | ||||||||||||||||||||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. as this is 'just' a pair, use
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I personally find lambdas on the left hand side of an operator (such as |
||||||||||||||||||||||||
| { fst = λ x → ≈⇒≋ (*-identityˡ x) | ||||||||||||||||||||||||
| ; snd = λ x → ≈⇒≋ (*-identityʳ x) | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| ; distrib = record | ||||||||||||||||||||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||||||||||||||||||||||||
| { fst = λ x y z → ≈⇒≋ (distribˡ x y z) | ||||||||||||||||||||||||
| ; snd = λ x y z → ≈⇒≋ (distribʳ x y z) | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| quotientRing : Ring c (c ⊔ ℓ ⊔ c′) | ||||||||||||||||||||||||
| quotientRing = record { isRing = quotientIsRing } | ||||||||||||||||||||||||
|
Comment on lines
+68
to
+69
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Similarly, can we inline the definition of |
||||||||||||||||||||||||
|
|
||||||||||||||||||||||||
| π-isHomomorphism : IsRingHomomorphism rawRing quotientRawRing π | ||||||||||||||||||||||||
| π-isHomomorphism = record | ||||||||||||||||||||||||
| { isSemiringHomomorphism = record | ||||||||||||||||||||||||
| { isNearSemiringHomomorphism = record | ||||||||||||||||||||||||
| { +-isMonoidHomomorphism = record | ||||||||||||||||||||||||
| { isMagmaHomomorphism = record | ||||||||||||||||||||||||
| { isRelHomomorphism = record | ||||||||||||||||||||||||
| { cong = ≈⇒≋ | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| ; homo = λ _ _ → ≋-refl | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| ; ε-homo = ≋-refl | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| ; *-homo = λ _ _ → ≋-refl | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| ; 1#-homo = ≋-refl | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| ; -‿homo = λ _ → ≋-refl | ||||||||||||||||||||||||
| } | ||||||||||||||||||||||||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,33 @@ | ||
| ------------------------------------------------------------------------ | ||
| -- The Agda standard library | ||
| -- | ||
| -- Ideals of a ring | ||
| ------------------------------------------------------------------------ | ||
|
|
||
| {-# OPTIONS --safe --cubical-compatible #-} | ||
|
|
||
| open import Algebra.Bundles using (Ring) | ||
|
|
||
| module Algebra.Ideal {c ℓ} (R : Ring c ℓ) where | ||
|
|
||
| open Ring R using (+-group; +-comm) | ||
|
|
||
| open import Algebra.Module.Construct.Sub.Bimodule using (Subbimodule) | ||
| import Algebra.Module.Construct.TensorUnit as TU | ||
| open import Algebra.NormalSubgroup (+-group) | ||
| open import Level | ||
|
|
||
| ------------------------------------------------------------------------ | ||
| -- Definition | ||
|
|
||
| -- a (two sided) ideal is exactly a subbimodule of R considered as a bimodule over itself | ||
| record Ideal c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) where | ||
| field | ||
| subbimodule : Subbimodule {R = R} TU.bimodule c′ ℓ′ | ||
|
|
||
| open Subbimodule subbimodule public | ||
|
|
||
| normalSubgroup : NormalSubgroup c′ ℓ′ | ||
| normalSubgroup = record | ||
| { isNormal = abelian⇒subgroup-normal +-comm subgroup | ||
jamesmckinna marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You can, somewhat counterintuitively, simplify this to