An implementation of various tensor-based decomposition for NN & RNN parameters
- Install
python >= 3.0 - Install
pytorch >= 3.0 pip install -e .orpython setup.py install
-
Go to example folder
cd example/polymusic -
Go to data folder, download the pickled dataset and return.
cd data && ./download_data.sh && cd .. -
Run any example script
python run_ttgru.py
For the usage, see the code inside example/polymusic/poly_allrnn.py
TuckerLinearCPLinearTTLinear
CPBilinearTuckerBilinear(TODO)
StatefulCPLSTMCellStatefulCPGRUCellStatefulTuckerLSTMCellStatefulTuckerGRUCellStatefulTTLSTMCellStatefulTTGRUCell
If you find this package is useful, please kindly cite:
@article{tjandra2018tensor,
title={Tensor Decomposition for Compressing Recurrent Neural Network},
author={Tjandra, Andros and Sakti, Sakriani and Nakamura, Satoshi},
journal={arXiv preprint arXiv:1802.10410},
year={2018}
}
@inproceedings{tjandra2017compressing,
title={Compressing recurrent neural network with tensor train},
author={Tjandra, Andros and Sakti, Sakriani and Nakamura, Satoshi},
booktitle={Neural Networks (IJCNN), 2017 International Joint Conference on},
pages={4451--4458},
year={2017},
organization={IEEE}
}