🤖 AI-Native · 🐍 Visual Python · 🌍 Multi-Market · 🔒 Privacy-First
Build, Backtest, and Trade with an AI Co-Pilot. Better than PineScript, Smarter than SaaS.
QuantDinger is a local-first, privacy-first quantitative trading infrastructure. It runs entirely on your machine, giving you full control over your strategies, trading data, and API keys.
Unlike SaaS platforms that lock your data and strategies in the cloud, QuantDinger runs locally. Your strategies, trading logs, API keys, and analysis results stay on your machine. No vendor lock-in, no subscription fees, no data exfiltration.
QuantDinger is built for traders, researchers, and engineers who:
- Value data sovereignty and privacy
- Want transparent, auditable trading infrastructure
- Prefer engineering over marketing
- Need a complete workflow: data, analysis, backtesting, and execution
QuantDinger includes a built-in LLM-based multi-agent research system that gathers financial intelligence from the web, combines it with local market data, and generates analysis reports. This integrates with strategy development, backtesting, and live trading workflows.
- 🔓 Apache 2.0 Open Source: Fully permissive and commercial-friendly. Unlike viral licenses (GPL/AGPL), you truly own your code and modifications.
- 🐍 Python-Native & Visual: Write indicators in standard Python (easier than PineScript) with AI assistance. Visualize signals directly on charts—a "Local TradingView" experience.
- 🤖 AI-Loop Optimization: It doesn't just run strategies; AI analyzes backtest results to suggest parameter tuning (Stop-Loss/TP/MACD settings), forming a closed optimization loop.
- 🌍 Universal Market Access: One unified system for Crypto (Live), US/CN Stocks, Forex, and Futures (Data/Notify).
- ⚡ Docker & Clean Arch: 4-line command deployment. Modern Tech Stack (Vue + Python) with a clean, separation-of-concerns architecture.
Better than PineScript, Smarter than SaaS.
- Python Native: Write indicators and strategies in Python. Leverage the entire Python ecosystem (Pandas, Numpy, TA-Lib) instead of proprietary languages like PineScript.
- "Mini-TradingView" Experience: Run your Python indicators directly on the built-in K-line charts. Visually debug buy/sell signals on historical data.
- AI-Assisted Coding: Let the built-in AI write the complex logic for you. From idea to code in seconds.
From Indicator to Execution, Seamlessly.
- Indicator: Define your market entry/exit signals.
- Strategy Config: Attach risk management rules (Position sizing, Stop-Loss, Take-Profit).
- Backtest & AI Optimization: Run backtests, view rich performance metrics, and let AI analyze the result to suggest improvements (e.g., "Adjust MACD threshold to X").
- Execution Mode:
- Live Trading: Direct API execution for 10+ Crypto Exchanges (Binance, OKX, etc.).
- Signal Notification: For non-executable markets (Stocks/Forex/Futures), send signals via Telegram, Discord, Email, SMS, or Webhook.
Your 24/7 AI Investment Committee.
The system employs a multi-agent team to act as a secondary filter for your strategies:
- Research Agents: Scrape web news and macro events (Google/Bing).
- Analysis Agents: Analyze technical indicators and capital flows.
- Strategic Integration: The AI judgment can serve as a "Market Filter"—only allowing your strategy to trade when the AI sentiment aligns (e.g., "Don't buy if AI Risk Analyst flags high macro danger").
QuantDinger provides a unified data interface across multiple markets:
- Cryptocurrency: Direct API connections for trading (10+ exchanges) and CCXT integration for market data (100+ sources)
- Stocks: Yahoo Finance, Finnhub, Tiingo (US stocks), and AkShare (CN/HK stocks)
- Futures/Forex: OANDA and major futures data sources
- Proxy Support: Built-in proxy configuration for restricted network environments
QuantDinger’s agents don’t start from scratch every time. The backend includes a local memory store and an optional reflection/verification loop:
- What it is: RAG-style experience retrieval injected into agent prompts (NOT model fine-tuning).
- Where it lives: Local SQLite files under
backend_api_python/data/memory/(privacy-first).
flowchart TB
%% ===== 🌐 Entry Layer =====
subgraph Entry["🌐 API Entry"]
A["📡 POST /api/analysis/multi"]
A2["🔄 POST /api/analysis/reflect"]
end
%% ===== ⚙️ Service Layer =====
subgraph Service["⚙️ Service Orchestration"]
B[AnalysisService]
C[AgentCoordinator]
D["📊 Build Context<br/>price · kline · news · indicators"]
end
%% ===== 🤖 Multi-Agent Workflow =====
subgraph Agents["🤖 Multi-Agent Workflow"]
subgraph P1["📈 Phase 1 · Analysis (Parallel)"]
E1["🔍 MarketAnalyst<br/><i>Technical</i>"]
E2["📑 FundamentalAnalyst<br/><i>Fundamentals</i>"]
E3["📰 NewsAnalyst<br/><i>News & Events</i>"]
E4["💭 SentimentAnalyst<br/><i>Market Mood</i>"]
E5["⚠️ RiskAnalyst<br/><i>Risk Assessment</i>"]
end
subgraph P2["🎯 Phase 2 · Debate (Parallel)"]
F1["🐂 BullResearcher<br/><i>Bullish Case</i>"]
F2["🐻 BearResearcher<br/><i>Bearish Case</i>"]
end
subgraph P3["💹 Phase 3 · Decision"]
G["🎰 TraderAgent<br/><i>Final Verdict → BUY / SELL / HOLD</i>"]
end
end
%% ===== 🧠 Memory Layer =====
subgraph Memory["🧠 Local SQLite Memory (data/memory/)"]
M1[("market_analyst")]
M2[("fundamental")]
M3[("news_analyst")]
M4[("sentiment")]
M5[("risk_analyst")]
M6[("bull_researcher")]
M7[("bear_researcher")]
M8[("trader_agent")]
end
%% ===== 🔄 Reflection Loop =====
subgraph Reflect["🔄 Reflection Loop (Optional)"]
R[ReflectionService]
RR[("reflection_records.db")]
W["⏰ ReflectionWorker"]
end
%% ===== Main Flow =====
A --> B --> C --> D
D --> P1 --> P2 --> P3
%% ===== Memory Read/Write =====
E1 <-.-> M1
E2 <-.-> M2
E3 <-.-> M3
E4 <-.-> M4
E5 <-.-> M5
F1 <-.-> M6
F2 <-.-> M7
G <-.-> M8
%% ===== Reflection Flow =====
C --> R --> RR
W --> RR
W -.->|"verify + learn"| M8
A2 -.->|"manual review"| M8
Retrieval ranking (simplified):
[ score = w_{sim}\cdot sim + w_{recency}\cdot recency + w_{returns}\cdot returns_score ]
Config lives in .env (see backend_api_python/env.example): ENABLE_AGENT_MEMORY, AGENT_MEMORY_TOP_K, AGENT_MEMORY_ENABLE_VECTOR, AGENT_MEMORY_HALF_LIFE_DAYS, and ENABLE_REFLECTION_WORKER.
- Thread-Based Executor: Independent thread pool for strategy execution
- Auto-Restore: Resumes running strategies after system restarts
- Order Queue: Background worker for order execution
- Backend: Python (Flask) + SQLite + Redis (optional)
- Frontend: Vue 2 + Ant Design Vue + KlineCharts/ECharts
- Deployment: Docker Compose
QuantDinger supports direct API connections to major cryptocurrency exchanges for execution, and uses CCXT for broad market data coverage.
| Exchange | Markets |
|---|---|
| Binance | Spot, Futures, Margin |
| OKX | Spot, Perpetual, Options |
| Bitget | Spot, Futures, Copy Trading |
Bybit, Gate.io, Kraken, KuCoin, HTX, and 100+ other exchanges for market data.
QuantDinger is built for a global audience with comprehensive internationalization:
All UI elements, error messages, and documentation are fully translated. Language is auto-detected based on browser settings or can be manually switched in the app.
| Market Type | Data Sources | Trading |
|---|---|---|
| Cryptocurrency | Binance, OKX, Bitget, + 100 exchanges | ✅ Full support |
| US Stocks | Yahoo Finance, Finnhub, Tiingo | ✅ Via broker API |
| CN/HK Stocks | AkShare, East Money | ⚡ Data only |
| Forex | Finnhub, OANDA | ✅ Via broker API |
| Futures | Exchange APIs, AkShare | ⚡ Data only |
┌─────────────────────────────┐
│ quantdinger_vue │
│ (Vue 2 + Ant Design Vue) │
└──────────────┬──────────────┘
│ HTTP (/api/*)
▼
┌─────────────────────────────┐
│ backend_api_python │
│ (Flask + strategy runtime) │
└──────────────┬──────────────┘
│
├─ SQLite (quantdinger.db)
├─ Redis (optional cache)
└─ Data providers / LLMs / Exchanges
.
├─ backend_api_python/ # Flask API + AI + backtest + strategy runtime
│ ├─ app/
│ ├─ env.example # Copy to .env for local config
│ ├─ requirements.txt
│ └─ run.py # Entrypoint
└─ quantdinger_vue/ # Vue 2 UI (dev server proxies /api -> backend)
The fastest way to get QuantDinger running.
Linux / macOS
git clone https://github.com/brokermr810/QuantDinger.git && \
cd QuantDinger && \
cp backend_api_python/env.example backend_api_python/.env && \
docker-compose up -d --buildWindows (PowerShell)
git clone https://github.com/brokermr810/QuantDinger.git
cd QuantDinger
Copy-Item backend_api_python\env.example -Destination backend_api_python\.env
docker-compose up -d --build- Frontend UI: http://localhost:8888
- Default Account:
quantdinger/123456
Note: For production or AI features, edit
backend_api_python/.env(addOPENROUTER_API_KEY, change passwords) and restart withdocker-compose restart backend.
- Frontend UI: http://localhost
- Backend API: http://localhost:5000
# View running status
docker-compose ps
# View logs
docker-compose logs -f
# View backend logs only
docker-compose logs -f backend
# View frontend logs only
docker-compose logs -f frontend
# Stop services
docker-compose down
# Stop and remove volumes (WARNING: deletes database!)
docker-compose down -v
# Restart services
docker-compose restart
# Rebuild and restart
docker-compose up -d --build
# Enter backend container
docker exec -it quantdinger-backend /bin/bash
# Enter frontend container
docker exec -it quantdinger-frontend /bin/sh┌─────────────────┐ ┌─────────────────┐
│ Frontend │ │ Backend │
│ (Nginx) │────▶│ (Python) │
│ Port: 80 │ │ Port: 5000 │
└─────────────────┘ └─────────────────┘
│ │
└───────────────────────┘
Docker Network
- Frontend: Vue.js app served by Nginx, proxies API requests to backend
- Backend: Python Flask API service
The following data is mounted to the host and persists across container restarts:
volumes:
- ./backend_api_python/quantdinger.db:/app/quantdinger.db # Database
- ./backend_api_python/logs:/app/logs # Logs
- ./backend_api_python/data:/app/data # Data directory
- ./backend_api_python/.env:/app/.env # ConfigurationChange ports - Edit docker-compose.yml:
services:
frontend:
ports:
- "8080:80" # Change to port 8080
backend:
ports:
- "5001:5000" # Change to port 5001Configure HTTPS - Use a reverse proxy (like Caddy/Nginx):
# Using Caddy (automatic HTTPS)
caddy reverse-proxy --from yourdomain.com --to localhost:80Security:
# Generate strong SECRET_KEY
openssl rand -hex 32
# Set secure admin password
ADMIN_PASSWORD=your-very-secure-passwordResource limits - Add to docker-compose.yml:
services:
backend:
deploy:
resources:
limits:
cpus: '2'
memory: 2G
reservations:
cpus: '0.5'
memory: 512MLog management:
services:
backend:
logging:
driver: "json-file"
options:
max-size: "100m"
max-file: "3"Frontend can't connect to backend:
docker-compose logs backend
curl http://localhost:5000/api/healthDatabase permission issues:
chmod 666 backend_api_python/quantdinger.dbBuild failures:
# Clear Docker cache and rebuild
docker-compose build --no-cacheOut of memory:
# Check memory usage
docker stats
# Add swap space (Linux)
sudo fallocate -l 2G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile# Pull latest code
git pull
# Rebuild and restart
docker-compose up -d --build# Backup database
cp backend_api_python/quantdinger.db backup/quantdinger_$(date +%Y%m%d).db
# Backup configuration
cp backend_api_python/.env backup/.env_$(date +%Y%m%d)Prerequisites
- Python 3.10+ recommended
- Node.js 16+ recommended
cd backend_api_python
pip install -r requirements.txt
cp env.example .env # Windows: copy env.example .env
python run.pyBackend will be available at http://localhost:5000.
cd quantdinger_vue
npm install
npm run serveFrontend dev server runs at http://localhost:8000 and proxies /api/* to http://localhost:5000 (see quantdinger_vue/vue.config.js).
Use backend_api_python/env.example as a template. Common settings include:
- Auth:
SECRET_KEY,ADMIN_USER,ADMIN_PASSWORD - Server:
PYTHON_API_HOST,PYTHON_API_PORT,PYTHON_API_DEBUG - Database:
SQLITE_DATABASE_FILE(optional; default isbackend_api_python/data/quantdinger.db) - AI / LLM:
OPENROUTER_API_KEY,OPENROUTER_MODEL, timeouts - Web search:
SEARCH_PROVIDER,SEARCH_GOOGLE_*,SEARCH_BING_API_KEY - Proxy (optional):
PROXY_PORTorPROXY_URL - Workers:
ENABLE_PENDING_ORDER_WORKER,DISABLE_RESTORE_RUNNING_STRATEGIES
The backend provides REST endpoints for login, market data, indicators, backtesting, strategies, and AI analysis.
- Health:
GET /health(also supportsGET /api/healthfor deployment probes) - Auth (frontend-compatible):
POST /api/user/login,POST /api/user/logout,GET /api/user/info
For the full route list, see backend_api_python/app/routes/.
Licensed under the Apache License 2.0. See LICENSE.
- Contributing: Contributing Guide · Contributors
- Telegram: QuantDinger Group
- Discord: Join Server
- 📺 Video Demo: Project Introduction
- YouTube: @quantdinger
- Email: brokermr810@gmail.com
- GitHub Issues: Report bugs / Request features
QuantDinger is open-source and free to use. If you find it useful, here are ways to support ongoing development:
ERC-20 / BEP-20 / Polygon / Arbitrum
0x96fa4962181bea077f8c7240efe46afbe73641a7
If you're signing up for supported exchanges, using the links below provides referral benefits that help support the project. These are optional and do not affect your trading fees or account functionality.
| Exchange | Referral Link |
|---|---|
| Binance | Sign up with referral |
| OKX | Sign up with referral |
| Bitget | Sign up with referral |
Professional services are available:
| Service | Description |
|---|---|
| Deployment & Setup | One-on-one assistance with server deployment, configuration, and optimization |
| Custom Strategy Development | Tailored trading strategies designed for your specific needs and markets |
| Enterprise Upgrade | Commercial license, priority support, and advanced features for businesses |
| Training & Consulting | Hands-on training sessions and strategic consulting for your trading team |
Interested? Contact us via:
- 📧 Email: brokermr810@gmail.com
- 💬 Telegram: QuantDinger Group
QuantDinger stands on the shoulders of great open-source projects:
| Project | Description | Link |
|---|---|---|
| Flask | Lightweight WSGI web framework | flask.palletsprojects.com |
| flask-cors | Cross-Origin Resource Sharing extension | GitHub |
| Pandas | Data analysis and manipulation library | pandas.pydata.org |
| CCXT | Cryptocurrency exchange trading library | github.com/ccxt/ccxt |
| yfinance | Yahoo Finance market data downloader | github.com/ranaroussi/yfinance |
| akshare | China financial data interface | github.com/akfamily/akshare |
| requests | HTTP library for Python | requests.readthedocs.io |
| Vue.js | Progressive JavaScript framework | vuejs.org |
| Ant Design Vue | Enterprise-class UI components | antdv.com |
| KlineCharts | Lightweight financial charting library | github.com/klinecharts/KLineChart |
| Lightweight Charts | TradingView charting library | github.com/nicepkg/lightweight-charts |
| ECharts | Apache data visualization library | echarts.apache.org |
Thanks to all maintainers and contributors across these ecosystems! ❤️




