Simple, fully local retrieval-augmented-generation powered by Ollama, Embedchain, and Chainlit.
- LLM: dolphin-mixtral
- Inference: Ollama
- Web UI: Chainlit
- RAG & Chat: Embedchain
- Vector DB: Chroma
The embedchain config uses dolphin-mixtral by default, but you can swap this out for any other model.
git clone https://github.com/deadbits/moce.git
cd mocepython3 -m venv venv
source venv/bin/activatepip install -r requirements.txtThis is required during the first run to download the embedding model.
export HUGGINGFACE_API_TOKEN="hf_..."docker pull chromadb/chroma
docker run -d -p 8000:8000 chromadb/chromachainlit run moce.py --port 8888| command | action |
|---|---|
| /add | add new document to the knowledge base |
| /kb | return last 25 documents added to knowledge base |
| /help | display this table |
| * | all other input is chat |
You can start a conversation by asking a question or sharing a document with the /add command.
Add data to knowledge base
/add https://huggingface.co/blog/shivance/illustrated-llm-os
Document names added to your knowledge base are tracked in data/indexed.json.
The /kb command will return the last 25 document names.
