Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,9 @@
<a href="https://huggingface.co/deepseek-ai" target="_blank">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
</a>
<a href="https://replicate.com/deepseek-ai" target="_blank_">
<img src="https://replicate.com/deepseek-ai/janus-pro-7b/badge" alt="Replicate"/>
</a>

</div>

Expand Down
25 changes: 25 additions & 0 deletions demo/cog.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Configuration for Cog ⚙️
# Reference: https://cog.run/yaml

build:
gpu: true
cuda: "12.1"
python_version: "3.11"
python_packages:
- "torch==2.2"
- "torchvision"
- "transformers==4.36.2"
- "accelerate==1.3.0"
- "diffusers==0.32.2"
- "opencv-python==4.10.0.84"
- "attrdict==2.0.1"
- "timm==1.0.14"
- "sentencepiece==0.2.0"
- "einops==0.8.0"
- "pillow==10.2.0"
- "numpy==1.24.3"

run:
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.8.2/pget_linux_x86_64" && chmod +x /usr/local/bin/pget

predict: "predict.py:Predictor"
98 changes: 98 additions & 0 deletions demo/predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
from cog import BasePredictor, Input, Path
import os
import time
import torch
import subprocess
import numpy as np
from PIL import Image
from janus.models import VLChatProcessor
from transformers import AutoConfig, AutoModelForCausalLM

MODEL_CACHE = "checkpoints"
# MODEL_URL = "https://weights.replicate.delivery/default/deepseek-ai/Janus-Pro-1B/model.tar"
MODEL_URL = "https://weights.replicate.delivery/default/deepseek-ai/Janus-Pro-7B/model.tar"

def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)

class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)

config = AutoConfig.from_pretrained(MODEL_CACHE)
language_config = config.language_config
language_config._attn_implementation = 'eager'

self.vl_gpt = AutoModelForCausalLM.from_pretrained(
MODEL_CACHE,
language_config=language_config,
trust_remote_code=True
)

if torch.cuda.is_available():
self.vl_gpt = self.vl_gpt.to(torch.bfloat16).cuda()
else:
self.vl_gpt = self.vl_gpt.to(torch.float16)

self.vl_chat_processor = VLChatProcessor.from_pretrained(MODEL_CACHE)
self.tokenizer = self.vl_chat_processor.tokenizer
self.cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'

@torch.inference_mode()
def predict(
self,
image: Path = Input(description="Input image for multimodal understanding"),
question: str = Input(description="Question about the image"),
seed: int = Input(description="Random seed for reproducibility", default=42),
top_p: float = Input(description="Top-p sampling value", default=0.95, ge=0, le=1),
temperature: float = Input(description="Temperature for text generation", default=0.1, ge=0, le=1),
) -> str:
"""Run a single prediction on the model"""
# Set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)

# Load and process image
pil_image = Image.open(image)
image_array = np.array(pil_image)

conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image_array],
},
{"role": "<|Assistant|>", "content": ""},
]

pil_images = [pil_image]
prepare_inputs = self.vl_chat_processor(
conversations=conversation,
images=pil_images,
force_batchify=True
).to(self.cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)

inputs_embeds = self.vl_gpt.prepare_inputs_embeds(**prepare_inputs)

outputs = self.vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=self.tokenizer.eos_token_id,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)

answer = self.tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer