Skip to content
This repository was archived by the owner on Mar 5, 2024. It is now read-only.
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 28 additions & 3 deletions combat/pycombat.py
Original file line number Diff line number Diff line change
Expand Up @@ -420,6 +420,27 @@ def check_NAs(dat):
return(NAs)


def remove_zero_variance_genes(dat, batches):
"""Remove rows (genes) with zero variance in at least one batch

Arguments:
dat {matrix} -- the data matrix
batches {array} -- batch indices

Returns:
non_zero_variance_data {matrix} -- the data matrix without rows with zero variance in a batch
genes_to_remove {array} -- array of indices of genes to remove
"""
genes_to_remove = []
for batch in batches:
batch_data = dat[:, batch]
zero_variance_index = batch_data.var(axis=1) == 0
genes_to_remove.append(zero_variance_index)
genes_to_remove = np.array(genes_to_remove).any(axis=0)
non_zero_variance_data = dat[~genes_to_remove,:]
return non_zero_variance_data, genes_to_remove


def calculate_mean_var(design, batches, ref, dat, NAs, ref_batch, n_batches, n_batch, n_array):
""" calculates the Normalisation factors

Expand Down Expand Up @@ -642,7 +663,7 @@ def pycombat(data, batch, mod=[], par_prior=True, prior_plots=False, mean_only=F

list_samples = data.columns
list_genes = data.index
dat = data.values
dat = data.copy().values

check_mean_only(mean_only)

Expand All @@ -651,6 +672,9 @@ def pycombat(data, batch, mod=[], par_prior=True, prior_plots=False, mean_only=F
n_batch, batches, n_batches, n_array = treat_batches(batch)
design = treat_covariates(batchmod, mod, ref, n_batch)
NAs = check_NAs(dat)
dat, genes_to_remove = remove_zero_variance_genes(dat, batches)
genes_to_keep = list_genes[~genes_to_remove]
genes_to_remove = list_genes[genes_to_remove]
if not(NAs):
B_hat, grand_mean, var_pooled = calculate_mean_var(
design, batches, ref, dat, NAs, ref_batch, n_batches, n_batch, n_array)
Expand All @@ -662,9 +686,10 @@ def pycombat(data, batch, mod=[], par_prior=True, prior_plots=False, mean_only=F
bayes_data = adjust_data(s_data, gamma_star, delta_star, batch_design,
n_batches, var_pooled, stand_mean, n_array, ref_batch, ref, batches, dat)

bayes_data_df = pd.DataFrame(bayes_data,
reduced_bayes_data_df = pd.DataFrame(bayes_data,
columns = list_samples,
index = list_genes)
index = genes_to_keep)
bayes_data_df = pd.concat([reduced_bayes_data_df, data.loc[genes_to_remove]], axis=0).loc[data.index]

return(bayes_data_df)
else:
Expand Down
15 changes: 15 additions & 0 deletions combat/test_unit.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
from .pycombat import check_mean_only, define_batchmod, check_ref_batch, treat_batches, treat_covariates, check_NAs
from .pycombat import calculate_mean_var, calculate_stand_mean
from .pycombat import standardise_data, fit_model, adjust_data
from .pycombat import remove_zero_variance_genes
from .pycombat import pycombat

##########
Expand Down Expand Up @@ -140,6 +141,20 @@ def test_all_1():
assert all_1(np.array([1.5,0.5,1,1,1])) == False # This test to show the limit of the method we use


# tests for remove_zero_variance_genes function
def test_remove_zero_variance_genes():
batches = [np.array([0,1,2,3]), np.array([4,5,6]), np.array([7,8])]
dat = np.array([[0,0,0,0,1,2,1,3,4],
[0,1,2,3,0,1,2,1,2],
[0,1,1,2,2,3,2,1,2],
[1,2,2,1,0,0,0,1,1]])
reduced_dat, genes_to_remove = remove_zero_variance_genes(dat, batches)
print(genes_to_remove)

assert reduced_dat.shape == (2, 9)
assert all([a == b for a, b in zip(genes_to_remove, np.array([ True, False, False, True]))])


# test for check_mean_only
def test_check_mean_only():
check_mean_only(True)
Expand Down