Skip to content

filippovarini/sharktrack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SharkTrack

AI-enhanced video analysis of sharks/rays to compute MaxN 21x faster.

SharkTrack Demo

Official Website


SharkTrack uses computer vision to detect and track elasmobranchs (sharks & rays) in BRUVS footage and compute species-specific MaxN.

For an in-depth guide, including how the pipeline works and how to review results, visit the SharkTrack Website.

Quick Start

1. Download

Download the latest release from GitHub Releases (zip file), unzip, and open a terminal in the sharktrack folder.

2. Install

pip install -r requirements.txt

3. Run

python app.py --input /path/to/your/videos

That's it! SharkTrack will process every .mp4 in the folder and save detections to ./outputs.

Configuration

Customise the run with optional flags:

python app.py --input /path/to/videos --conf 0.25 --peek --stereo_prefix L --resume
Flag Description
--input Path to video folder (processes all .mp4 files recursively)
--output Path to output folder (default: ./outputs)
--conf Detection confidence threshold (default: 0.25)
--peek Fast mode — extracts interesting frames only, no MaxN
--stereo_prefix Only process videos whose filename starts with this prefix
--chapters Aggregate chapter-split videos into one
--resume Skip already-processed videos
--limit Max number of videos to process (default: 1000)

4. Review & Compute MaxN

After processing, classify detections and generate MaxN. See the Annotation Pipeline Guide for detailed instructions, or run:

python utils/compute_maxn.py --path outputs

Using SharkTrack? Let Us Know!

SharkTrack is free and open-source. If you are using it in your research, we'd love to hear from you — it helps us improve SharkTrack and spotlight your work on our website.

Tell us about your project

Citation

If you use SharkTrack, please cite:

@article{varini2024sharktrack,
  title={SharkTrack: an accurate, generalisable software for streamlining shark and ray underwater video analysis},
  author={Varini, F. and Gayford, J. H. and Jenrette, J. and Witt, M. J. and Garzon, F. and Ferretti, F. and Glocker, B.},
  journal={arXiv preprint arXiv:2407.20623},
  year={2024}
}

Contributors

This software and related work was supported by the efforts of:

Filippo Varini, Joel H. Gayford, Jeremy Jenrette, Matthew J. Witt, Francesco Garzon, Francesco Ferretti, Sophie Wilday, Mark E. Bond, Michael R. Heithaus, Danielle Robinson, Devon Carter, Najee Gumbs, Vincent Webster, Ben Glocker, Fabio De Sousa Ribeiro, Rajat Rasal, Orlando Timmerman, Natalie Ng, Rui Wen Lim, Michael Sellgren, Lara Tse, Steven Chen, Maria Pia Donrelas, Manfredi Minervini, Xuen Bei (Bay) Chin, Adam Whiting, Aurora Crocini, Gabriele Bai, Stephanie Guerinfor.

Support & Contact

  • IssuesOpen a GitHub Issue (we aim to respond within a week)
  • Emailfppvrn@gmail.com
  • Contributions — Pull requests, suggestions, and collaborations are welcome. This is part of a broader effort to develop generalisable marine species classifiers — get in touch if you want to get involved in AI-driven ocean conservation.

Licensed under the MIT License

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 5

Languages