Implementation of a binary classify By pytorch
Prepare a dataset for positive and negative samples. Such as Eye Dataset, determine open eyes as positive samples, closed eyes as negative samples.
1.put positive samples to ./data/positive/
2.put negative samples to ./data/negative/
3.run ./data/train_test_data.py
 $ cd ./data 
 $ python3 train_test_data.pytraining :
 $ sh train.shtesting:
 $ python3 test_img.pyPytorch -> onnx -> onnx_sim
make sure pip3 install onnx-simplifier
 $ python3 pytorch2onnx.py
 $ python3 -m onnxsim model.onnx model_sim.onnxonnx_sim -> ncnn
how to build :https://github.com/Tencent/ncnn/wiki/how-to-build
 $ cd ncnn/build/tools/onnx
 $ ./onnx2ncnn model_sim.onnx model_sim.param model_sim.bin- ncnn inference
 - train on FocalLoss
 - train on multi-class model
 - fix bugs