A package that provides an OpenAI-compatible API for LangGraph instances.
- Expose your LangGraph instances through an OpenAI-compatible API
- Register multiple graphs and map them to different model names
- Use with any FastAPI application
- Support for both streaming and non-streaming completions
# Using uv
uv add langgraph-openai-serve
# Using pip
pip install langgraph-openai-serveHere's a simple example of how to use LangGraph OpenAI Serve:
from langgraph_openai_serve import LangchainOpenaiApiServe, GraphRegistry, GraphConfig
# Import your LangGraph instances
from your_graphs import simple_graph
async def advanced_graph():
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
tools = await MultiServerMCPClient().get_tools()
graph = create_react_agent(model="openai:gpt-4.1", tools=tools)
return graph
# You can configure your graphs with your desired configurations.
simple_graph_with_history = simple_graph.with_config(
configurable={"use_history": True},
)
simple_graph_no_history = simple_graph.with_config(
configurable={"use_history": False},
)
# Create a GraphRegistry
graph_registry = GraphRegistry(
registry={
"simple-graph-with-history": GraphConfig(
graph=simple_graph_with_history, streamable_node_names=["generate"]
),
"simple-graph-no-history": GraphConfig(
graph=simple_graph_no_history, streamable_node_names=["generate"]
),
"advanced_graph": GraphConfig(graph=advanced_graph, streamable_node_names=["generate"])
}
)
graph_serve = LangchainOpenaiApiServe(
graphs=graph_registry,
)
# Bind the OpenAI-compatible endpoints
graph_serve.bind_openai_chat_completion(prefix="/v1")
# Run the app with uvicorn
if __name__ == "__main__":
import uvicorn
uvicorn.run(graph_serve.app, host="0.0.0.0", port=8000)Usage with your own FastAPI app is also supported:
from fastapi import FastAPI
from langgraph_openai_serve import LangchainOpenaiApiServe, GraphRegistry, GraphConfig
# Import your LangGraph instances
from your_graphs import simple_graph, advanced_graph
# Create a FastAPI app
app = FastAPI(
title="LangGraph OpenAI API",
version="1.0",
description="OpenAI API exposing LangGraph agents",
)
# Create a GraphRegistry
graph_registry = GraphRegistry(
registry={
"simple_graph": GraphConfig(graph=simple_graph, streamable_node_names=["generate"]),
"advanced_graph": GraphConfig(graph=advanced_graph, streamable_node_names=["generate"])
}
)
graph_serve = LangchainOpenaiApiServe(
app=app,
graphs=graph_registry,
)
# Bind the OpenAI-compatible endpoints
graph_serve.bind_openai_chat_completion(prefix="/v1")
# Run the app with uvicorn
if __name__ == "__main__":
import uvicorn
uvicorn.run(graph_serve.app, host="0.0.0.0", port=8000)Once your API is running, you can use any OpenAI-compatible client to interact with it:
from openai import OpenAI
# Create a client pointing to your API
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="any-value" # API key is not verified
)
# Use a specific graph by specifying its name as the model
response = client.chat.completions.create(
model="simple_graph_1", # This maps to the graph name in your registry
messages=[
{"role": "user", "content": "Hello, how can you help me today?"}
]
)
print(response.choices[0].message.content)
# You can also use streaming
stream = client.chat.completions.create(
model="advanced_graph",
messages=[
{"role": "user", "content": "Write a short poem about AI."}
],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="")To run with Docker:
# Start the server
docker compose up -d langgraph-openai-serve-dev
# For a complete example with open-webui
docker compose up -d open-webui