Skip to content

PhenoQC is a lightweight, efficient, and user-friendly toolkit designed to perform comprehensive quality control (QC) on phenotypic datasets. It ensures that data adheres to standardized formats, maintains consistency, and is harmonized with recognized ontologies.

License

Notifications You must be signed in to change notification settings

jorgeMFS/PhenoQC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PhenoQC

Tests Coverage Python 3.9+ License: MIT Code style: black PyPI version Downloads Documentation Status DOI

PhenoQC is a lightweight, efficient, and user-friendly toolkit designed to perform comprehensive quality control (QC) on phenotypic datasets. It ensures that data adheres to standardized formats, maintains consistency, and is harmonized with recognized ontologies—facilitating seamless integration with genomic data for advanced research.


Key Features

  • Comprehensive Data Validation:
    Checks format compliance, schema adherence, and data consistency against JSON schemas.

  • Ontology Mapping:
    Maps phenotypic terms to standardized ontologies (HPO, DO, MPO) with synonym resolution and optional custom mappings.

  • Missing Data Handling:
    Detects and optionally imputes missing data (e.g., mean, median, mode, KNN, MICE, SVD) or flags records for manual review.

  • Batch Processing:
    Processes multiple files simultaneously in parallel, streamlining large-scale data QC.

  • User-Friendly Interfaces:
    Provides a command-line interface (CLI) for power users and a Streamlit-based GUI for interactive workflows.

  • Reporting and Visualization:
    Generates detailed QC reports (PDF or Markdown) and produces visual summaries of data quality metrics.

  • Extensibility:
    Modular design supports easy customization of validation rules, mapping expansions, or new ontologies.

  • Class Distribution (Optional):
    Provide a label column to get a class-imbalance summary and warning if the minority proportion falls below a threshold.

  • Strategy‑agnostic Imputation & Tuning:
    Configure global strategy and params (mean, median, mode, knn, mice, svd, none), per‑column overrides, and optional mask‑and‑score tuning.


Table of Contents


Installation

PhenoQC requires Python 3.9+.

From PyPI

pip install phenoqc

From source

git clone https://github.com/jorgeMFS/PhenoQC.git
cd PhenoQC
pip install -e .

For local development without installation you can run:

python -m phenoqc.cli

Dependencies are listed in requirements.txt.


Quick Start

phenoqc --help

# Minimal run
phenoqc \
  --input examples/samples/sample_data.csv \
  --schema examples/schemas/pheno_schema.json \
  --config config.yaml \
  --unique_identifiers SampleID \
  --output ./reports/

Enable class distribution and imputation tuning:

phenoqc \
  --input data.csv \
  --schema schema.json \
  --config config.yaml \
  --unique_identifiers SampleID \
  --label-column class --imbalance-threshold 0.10 \
  --impute-params '{"n_neighbors": 5}' --impute-tuning on \
  --output ./reports/

CLI

PhenoQC provides a flexible command-line interface suited for automation.

Examples

Process a single file

phenoqc \
  --input examples/samples/sample_data.json \
  --output ./reports/ \
  --schema examples/schemas/pheno_schema.json \
  --config config.yaml \
  --custom_mappings examples/mapping/custom_mappings.json \
  --impute mice \
  --unique_identifiers SampleID \
  --phenotype_columns '{"PrimaryPhenotype": ["HPO"], "DiseaseCode": ["DO"]}' \
  --ontologies HPO DO

Batch process multiple files

phenoqc \
  --input examples/samples/sample_data.csv examples/samples/sample_data.json examples/samples/sample_data.tsv \
  --output ./reports/ \
  --schema examples/schemas/pheno_schema.json \
  --config config.yaml \
  --impute none \
  --unique_identifiers SampleID \
  --ontologies HPO DO MPO \
  --phenotype_columns '{"PrimaryPhenotype": ["HPO"], "DiseaseCode": ["DO"], "TertiaryPhenotype": ["MPO"]}'

Useful flags

  • --impute-params '{"n_neighbors": 5}' (JSON)
  • --impute-tuning on|off
  • --label-column class and --imbalance-threshold 0.10
  • --quality-metrics imputation_bias redundancy (or all) (alias: --metrics)
  • Imputation-bias thresholds: --bias-smd-threshold, --bias-var-low, --bias-var-high, --bias-ks-alpha
  • Categorical bias thresholds: --bias-psi-threshold, --bias-cramer-threshold
  • Imputation stability diagnostics: --impute-diagnostics on|off, --diag-repeats, --diag-mask-fraction, --diag-scoring
  • Stability fail threshold: --stability-cv-fail-threshold (fail run if average CV exceeds value)
  • Protected columns: --protected-columns label outcome
  • Redundancy: --redundancy-threshold, --redundancy-method {pearson,spearman}
  • Offline/caching: --offline forces cached/local ontologies only; no downloads. In online mode, ontology downloads use retry/backoff and are cached under ~/.phenoqc/ontologies respecting cache_expiry_days in config.

Reports generated under --output include a PDF with:

  • Summary & scores
  • Optional Class Distribution (when label column is set)
  • Additional Quality Dimensions (only when computed)
  • Missing data summary, mapping success, and visuals

CLI vs config precedence

  • CLI flags override values in the YAML config for the run.
  • If you set --impute-params or enable --impute-tuning on, these take precedence over imputation.params/imputation.tuning in config.yaml.
  • Same precedence applies to diagnostics thresholds and redundancy settings.

Config (imputation block)

imputation:
  strategy: knn
  params:
    n_neighbors: 5
  weights: uniform
  per_column:
    Creatinine_mgdl:
      strategy: mice
      params: {max_iter: 15}
    Cholesterol_mgdl:
      strategy: svd
      params: {rank: 3}
  tuning:
    enable: true
    mask_fraction: 0.1
    scoring: MAE
    max_cells: 20000
    random_state: 42
    grid:
      n_neighbors: [3, 5, 7]

GUI

Launch the Streamlit interface:

# Local
python run_gui.py

# Streamlit Community Cloud
# In the deploy UI, set the entrypoint to `streamlit_app.py`

Workflow:

  • Step 3: Optional label column and imbalance threshold
  • Step 4: Default strategy, per‑column overrides, parameters, and tuning (strategy‑agnostic)
  • Step 4 includes: Bias thresholds, Stability diagnostics (enable, repeats, mask fraction, scoring), Protected columns, and Redundancy settings
  • Results: Class Distribution table/plot, Imputation Settings, Imputation Stability & Bias, Tuning Summary
    • Bias includes numeric (SMD, variance ratio, KS) and categorical (PSI, Cramér’s V) metrics; report shows which rules triggered per variable
    • Optional Multiple Imputation Uncertainty (MICE repeats) table

Reports

  • Class Distribution: table and warning when minority proportion < threshold
  • Imputation Settings: global strategy/params and tuning summary
  • Imputation Stability & Bias: per-variable stability (repeatability) and bias diagnostics with thresholds and triggers
  • Additional Quality: only displayed if metrics are computed

Examples and Scripts

  • scripts/e2e_small_quality_metrics_cli_test.py – small demo focusing on quality metrics
  • scripts/e2e_medium_cli_test.py – mid-sized end-to-end pipeline run
  • scripts/end_to_end_e2e_cli_test.py – large end-to-end pipeline run
  • scripts/clinical_all_features_e2e.py – comprehensive clinical exam: full dataset/schema/config/custom mappings, online+offline, per‑column imputation coverage
  • scripts/imputation_params_cli_test.py – imputation params and optional tuning
  • scripts/end_to_end_diagnostics_demo.sh – end-to-end example enabling stability & bias diagnostics with CLI overrides

Configuration

PhenoQC relies on a YAML config file (e.g., config.yaml) to define ontologies, fuzzy matching thresholds, caching, and imputation defaults.

Sample config.yaml:

ontologies:
  HPO:
    name: Human Phenotype Ontology
    source: url
    url: http://purl.obolibrary.org/obo/hp.obo
    format: obo
  DO:
    name: Disease Ontology
    source: url
    url: http://purl.obolibrary.org/obo/doid.obo
    format: obo
  MPO:
    name: Mammalian Phenotype Ontology
    source: url
    url: http://purl.obolibrary.org/obo/mp.obo
    format: obo

default_ontologies:
  - HPO
  - DO
  - MPO

fuzzy_threshold: 80
cache_expiry_days: 30
# optional: offline (forces cache/local ontologies only for the run)
# offline: true

quality_metrics:
  redundancy: { enable: true }
  imputation_bias: { enable: true }
  imputation_stability: { enable: true, repeats: 5, mask_fraction: 0.10, scoring: MAE }
class_distribution:
  label_column: class
  warn_threshold: 0.10

imputation_bias:
  smd_threshold: 0.10
  var_ratio_low: 0.5
  var_ratio_high: 2.0
  ks_alpha: 0.05
  psi_threshold: 0.10
  cramer_threshold: 0.20

imputation:
  strategy: knn
  params:
    n_neighbors: 5
    weights: uniform
  per_column:
    Creatinine_mgdl:
      strategy: mice
      params:
        max_iter: 15
    Cholesterol_mgdl:
      strategy: svd
      params:
        rank: 3
  tuning:
    enable: true
    mask_fraction: 0.1
    scoring: MAE
    max_cells: 20000
    random_state: 42
    grid:
      n_neighbors: [3, 5, 7]

Note: Labels are never modified and are excluded from the imputation matrix when a label_column is provided.

Troubleshooting

  • Ontology Mapping Failures: Check if config.yaml points to valid ontology URLs or local files.
  • Missing Required Columns: Ensure columns specified as unique identifiers or phenotypic columns exist in the dataset.
  • Imputation Errors: Some strategies (e.g., mean) only apply to numeric columns.
  • Logs: Consult the phenoqc_*.log file for in-depth error messages.

Contributing

  1. Fork the repository on GitHub.
  2. Create a branch, implement changes, and add tests or documentation as appropriate.
  3. Open a Pull Request describing your contribution.

We welcome improvements that enhance PhenoQC's functionality or documentation.


License

Distributed under the MIT License.


Contact

Maintainer:
Jorge Miguel Ferreira da Silva
jorge(dot)miguel(dot)ferreira(dot)silva(at)ua(dot)pt

For more details, see the GitHub Wiki or open an issue on GitHub.


Last updated: August 10, 2025.

About

PhenoQC is a lightweight, efficient, and user-friendly toolkit designed to perform comprehensive quality control (QC) on phenotypic datasets. It ensures that data adheres to standardized formats, maintains consistency, and is harmonized with recognized ontologies.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •