[Merged by Bors] - feat(Algebra/Homology): a homology data from an epi-mono factorization#33875
Conversation
PR summary 62a82d6d0aImport changes exceeding 2%
|
| File | Base Count | Head Count | Change |
|---|---|---|---|
| Mathlib.Algebra.Homology.ShortComplex.Abelian | 729 | 756 | +27 (+3.70%) |
| Mathlib.Algebra.Homology.ShortComplex.Exact | 762 | 764 | +2 (+0.26%) |
Import changes for all files
| Files | Import difference |
|---|---|
97 filesMathlib.Algebra.Category.ContinuousCohomology.Basic Mathlib.Algebra.Category.ModuleCat.Biproducts Mathlib.Algebra.Category.ModuleCat.Descent Mathlib.Algebra.Category.ModuleCat.Free Mathlib.Algebra.Category.ModuleCat.LeftResolution Mathlib.Algebra.Category.ModuleCat.Localization Mathlib.Algebra.Homology.AlternatingConst Mathlib.Algebra.Homology.BifunctorHomotopy Mathlib.Algebra.Homology.BifunctorShift Mathlib.Algebra.Homology.CochainComplexOpposite Mathlib.Algebra.Homology.Embedding.Connect Mathlib.Algebra.Homology.Embedding.ExtendHomology Mathlib.Algebra.Homology.Embedding.ExtendHomotopy Mathlib.Algebra.Homology.Embedding.Extend Mathlib.Algebra.Homology.Embedding.HomEquiv Mathlib.Algebra.Homology.Embedding.IsSupported Mathlib.Algebra.Homology.Embedding.RestrictionHomology Mathlib.Algebra.Homology.Embedding.StupidTrunc Mathlib.Algebra.Homology.Embedding.TruncGEHomology Mathlib.Algebra.Homology.Embedding.TruncGE Mathlib.Algebra.Homology.Embedding.TruncLE Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit Mathlib.Algebra.Homology.HomotopyCategory.HomComplexCohomology Mathlib.Algebra.Homology.HomotopyCategory.HomComplexInduction Mathlib.Algebra.Homology.HomotopyCategory.HomComplexShift Mathlib.Algebra.Homology.HomotopyCategory.HomComplexSingle Mathlib.Algebra.Homology.HomotopyCategory.HomComplex Mathlib.Algebra.Homology.HomotopyCategory.MappingCone Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated Mathlib.Algebra.Homology.HomotopyCategory.ShiftSequence Mathlib.Algebra.Homology.HomotopyCategory.Shift Mathlib.Algebra.Homology.HomotopyCategory.SingleFunctors Mathlib.Algebra.Homology.HomotopyCategory.SpectralObject Mathlib.Algebra.Homology.HomotopyCategory.Triangulated Mathlib.Algebra.Homology.HomotopyCategory Mathlib.Algebra.Homology.HomotopyCofiber Mathlib.Algebra.Homology.Homotopy Mathlib.Algebra.Homology.LeftResolution.Basic Mathlib.Algebra.Homology.LeftResolution.Reduced Mathlib.Algebra.Homology.LeftResolution.Transport Mathlib.Algebra.Homology.LocalCohomology Mathlib.Algebra.Homology.Localization Mathlib.Algebra.Homology.Opposite Mathlib.Algebra.Homology.QuasiIso Mathlib.Algebra.Homology.Refinements Mathlib.Algebra.Homology.ShortComplex.ConcreteCategory Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex Mathlib.Algebra.Homology.ShortComplex.ModuleCat Mathlib.Algebra.Homology.ShortComplex.SnakeLemma Mathlib.Algebra.Homology.SingleHomology Mathlib.Algebra.Homology.TotalComplexShift Mathlib.Algebra.Module.PID Mathlib.AlgebraicTopology.DoldKan.Decomposition Mathlib.AlgebraicTopology.DoldKan.Degeneracies Mathlib.AlgebraicTopology.DoldKan.EquivalenceAdditive Mathlib.AlgebraicTopology.DoldKan.EquivalencePseudoabelian Mathlib.AlgebraicTopology.DoldKan.Equivalence Mathlib.AlgebraicTopology.DoldKan.Faces Mathlib.AlgebraicTopology.DoldKan.FunctorGamma Mathlib.AlgebraicTopology.DoldKan.FunctorN Mathlib.AlgebraicTopology.DoldKan.GammaCompN Mathlib.AlgebraicTopology.DoldKan.Homotopies Mathlib.AlgebraicTopology.DoldKan.HomotopyEquivalence Mathlib.AlgebraicTopology.DoldKan.NCompGamma Mathlib.AlgebraicTopology.DoldKan.NReflectsIso Mathlib.AlgebraicTopology.DoldKan.Normalized Mathlib.AlgebraicTopology.DoldKan.PInfty Mathlib.AlgebraicTopology.DoldKan.Projections Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject Mathlib.AlgebraicTopology.ExtraDegeneracy Mathlib.AlgebraicTopology.SingularHomology.Basic Mathlib.Analysis.Fourier.FiniteAbelian.PontryaginDuality Mathlib.CategoryTheory.Abelian.DiagramLemmas.KernelCokernelComp Mathlib.CategoryTheory.Abelian.Ext Mathlib.CategoryTheory.Abelian.Injective.Resolution Mathlib.CategoryTheory.Abelian.LeftDerived Mathlib.CategoryTheory.Abelian.Projective.Resolution Mathlib.CategoryTheory.Abelian.RightDerived Mathlib.CategoryTheory.Abelian.SerreClass.Bousfield Mathlib.CategoryTheory.Abelian.SerreClass.MorphismProperty Mathlib.CategoryTheory.Monoidal.Tor Mathlib.CategoryTheory.Preadditive.Injective.Resolution Mathlib.CategoryTheory.Preadditive.Projective.Resolution Mathlib.FieldTheory.Galois.NormalBasis Mathlib.GroupTheory.FiniteAbelian.Basic Mathlib.GroupTheory.FiniteAbelian.Duality Mathlib.NumberTheory.DirichletCharacter.Orthogonality Mathlib.NumberTheory.LSeries.PrimesInAP Mathlib.NumberTheory.MulChar.Duality Mathlib.RepresentationTheory.Coinvariants Mathlib.RepresentationTheory.FiniteIndex Mathlib.RepresentationTheory.Homological.Resolution Mathlib.RepresentationTheory.Induced Mathlib.RingTheory.Flat.CategoryTheory Mathlib.RingTheory.Regular.Category Mathlib.Topology.Category.Profinite.Nobeling.Induction Mathlib.Topology.Category.Profinite.Nobeling.Successor |
1 |
63 filesMathlib.Algebra.Category.Grp.AB Mathlib.Algebra.Category.Grp.IsFinite Mathlib.Algebra.Category.ModuleCat.AB Mathlib.Algebra.Category.ModuleCat.Presheaf.Generator Mathlib.Algebra.Category.ModuleCat.Presheaf.Pullback Mathlib.Algebra.Category.ModuleCat.Sheaf.PullbackContinuous Mathlib.Algebra.Category.ModuleCat.Sheaf.PullbackFree Mathlib.Algebra.Homology.ExactSequenceFour Mathlib.Algebra.Homology.ExactSequence Mathlib.Algebra.Homology.Factorizations.Basic Mathlib.Algebra.Homology.GrothendieckAbelian Mathlib.Algebra.Homology.HomologicalComplexAbelian Mathlib.Algebra.Homology.ShortComplex.Ab Mathlib.Algebra.Homology.ShortComplex.ExactFunctor Mathlib.Algebra.Homology.ShortComplex.Exact Mathlib.Algebra.Homology.ShortComplex.ShortExact Mathlib.AlgebraicGeometry.Modules.Sheaf Mathlib.AlgebraicGeometry.Modules.Tilde Mathlib.CategoryTheory.Abelian.CommSq Mathlib.CategoryTheory.Abelian.DiagramLemmas.Four Mathlib.CategoryTheory.Abelian.EpiWithInjectiveKernel Mathlib.CategoryTheory.Abelian.Exact Mathlib.CategoryTheory.Abelian.FreydMitchell Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.Basic Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.Colim Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.Connected Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.FunctorCategory Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.Indization Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.Sheaf Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.Types Mathlib.CategoryTheory.Abelian.GrothendieckCategory.Basic Mathlib.CategoryTheory.Abelian.GrothendieckCategory.ColimCoyoneda Mathlib.CategoryTheory.Abelian.GrothendieckCategory.Coseparator Mathlib.CategoryTheory.Abelian.GrothendieckCategory.EnoughInjectives Mathlib.CategoryTheory.Abelian.GrothendieckCategory.ModuleEmbedding.GabrielPopescu Mathlib.CategoryTheory.Abelian.GrothendieckCategory.ModuleEmbedding.Opposite Mathlib.CategoryTheory.Abelian.GrothendieckCategory.Monomorphisms Mathlib.CategoryTheory.Abelian.GrothendieckCategory.Subobject Mathlib.CategoryTheory.Abelian.Injective.Basic Mathlib.CategoryTheory.Abelian.Projective.Basic Mathlib.CategoryTheory.Abelian.Pseudoelements Mathlib.CategoryTheory.Abelian.Refinements Mathlib.CategoryTheory.Abelian.SerreClass.Basic Mathlib.CategoryTheory.Abelian.Yoneda Mathlib.CategoryTheory.Noetherian Mathlib.CategoryTheory.ObjectProperty.EpiMono Mathlib.CategoryTheory.ObjectProperty.Extensions Mathlib.CategoryTheory.ObjectProperty.FunctorCategory.PreservesLimits Mathlib.CategoryTheory.Sites.MayerVietorisSquare Mathlib.CategoryTheory.Sites.Point.Basic Mathlib.CategoryTheory.Sites.Point.Category Mathlib.CategoryTheory.Subobject.ArtinianObject Mathlib.CategoryTheory.Subobject.NoetherianObject Mathlib.CategoryTheory.Triangulated.Adjunction Mathlib.CategoryTheory.Triangulated.HomologicalFunctor Mathlib.CategoryTheory.Triangulated.Opposite.Functor Mathlib.CategoryTheory.Triangulated.Opposite.OpOp Mathlib.CategoryTheory.Triangulated.Opposite.Pretriangulated Mathlib.CategoryTheory.Triangulated.Opposite.Triangulated Mathlib.CategoryTheory.Triangulated.Yoneda Mathlib.Condensed.AB Mathlib.Condensed.Light.AB Mathlib.Topology.Sheaves.MayerVietoris |
2 |
Mathlib.Algebra.Category.ModuleCat.Topology.Homology |
3 |
Mathlib.Algebra.Homology.ShortComplex.Abelian |
27 |
Declarations diff
+ cokernelSequence
+ cokernelSequence_exact
+ f'_eq
+ g'_eq
+ homologyIsoImageICyclesCompPOpcycles
+ homologyIsoImageICyclesCompPOpcycles_ι
+ homologyπ_isoHomology_inv
+ instance : Abelian (ShortComplex C)
+ instance : Epi (cokernelSequence f).g := by
+ instance : IsNormalEpiCategory (ShortComplex C) := ⟨fun p _ => ⟨by
+ instance : IsNormalMonoCategory (ShortComplex C) := ⟨fun i _ => ⟨by
+ instance : Mono (kernelSequence f).f := by
+ isoHomology
+ isoHomology_hom_comp_ι
+ isoHomology_inv_homologyι
+ isoImage
+ isoImage_ι
+ kernelSequence
+ kernelSequence_exact
+ leftHomologyData
+ ofEpiMonoFactorisation
+ rightHomologyData
+ π_comp_isoHomology_hom
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>The doc-module for script/declarations_diff.sh contains some details about this script.
No changes to technical debt.
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relativevalue is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolutevalue is therelativevalue divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).
|
This PR/issue depends on: |
|
Thanks! maintainer merge |
|
🚀 Pull request has been placed on the maintainer queue by dagurtomas. |
|
This pull request has conflicts, please merge |
…3-shortcomplex-abelian
#33875) Let `S` be a short complex in an abelian category. If `K` is a kernel of `S.g` and `Q` a cokernel of `S.f`, and `K ⟶ H ⟶ Q` is an epi-mono factorization of `K ⟶ S.X₂ ⟶ Q`, then `H` identifies to the homology of `S`. (That shall be used when computing the homology of the differentials on pages of spectral sequences #33842.) In this PR, we also show that `ShortComplex C` is an abelian category if `C` is abelian.
|
Pull request successfully merged into master. Build succeeded: |
leanprover-community#33875) Let `S` be a short complex in an abelian category. If `K` is a kernel of `S.g` and `Q` a cokernel of `S.f`, and `K ⟶ H ⟶ Q` is an epi-mono factorization of `K ⟶ S.X₂ ⟶ Q`, then `H` identifies to the homology of `S`. (That shall be used when computing the homology of the differentials on pages of spectral sequences leanprover-community#33842.) In this PR, we also show that `ShortComplex C` is an abelian category if `C` is abelian.
leanprover-community#33875) Let `S` be a short complex in an abelian category. If `K` is a kernel of `S.g` and `Q` a cokernel of `S.f`, and `K ⟶ H ⟶ Q` is an epi-mono factorization of `K ⟶ S.X₂ ⟶ Q`, then `H` identifies to the homology of `S`. (That shall be used when computing the homology of the differentials on pages of spectral sequences leanprover-community#33842.) In this PR, we also show that `ShortComplex C` is an abelian category if `C` is abelian.
Let
Sbe a short complex in an abelian category. IfKis a kernel ofS.gandQa cokernel ofS.f, andK ⟶ H ⟶ Qis an epi-mono factorization ofK ⟶ S.X₂ ⟶ Q, thenHidentifies to the homology ofS.(That shall be used when computing the homology of the differentials on pages of spectral sequences #33842.)
In this PR, we also show that
ShortComplex Cis an abelian category ifCis abelian.