Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
Original file line number Diff line number Diff line change
Expand Up @@ -298,8 +298,9 @@ theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y')
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
(one : F.obj one ≅ G.obj one)
(left : F.map left ≫ one.hom = zero.hom ≫ G.map left := by cat_disch)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right := by cat_disch) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
Expand Down
31 changes: 31 additions & 0 deletions Mathlib/CategoryTheory/Limits/Shapes/NormalMono/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,21 @@ def normalOfIsPullbackFstOfNormal {P Q R S : C} {f : P ⟶ Q} {g : P ⟶ R} {h :
NormalMono f :=
normalOfIsPullbackSndOfNormal comm.symm (PullbackCone.flipIsLimit t)

/-- Transport a `NormalMono` structure via an isomorphism of arrows. -/
def NormalMono.ofArrowIso {X Y : C} {f : X ⟶ Y}
(hf : NormalMono f) {X' Y' : C} {f' : X' ⟶ Y'} (e : Arrow.mk f ≅ Arrow.mk f') :
NormalMono f' where
Z := hf.Z
g := e.inv.right ≫ hf.g
w := by
have := Arrow.w e.inv
dsimp at this
rw [← reassoc_of% this, hf.w, comp_zero]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I have often seen this % operator, but I can't figure out what it does.

isLimit := by
refine (IsLimit.equivOfNatIsoOfIso ?_ _ _ ?_).1 hf.isLimit
· exact parallelPair.ext (Arrow.rightFunc.mapIso e) (Iso.refl _)
· exact Fork.ext (Arrow.leftFunc.mapIso e)

section

variable (C)
Expand Down Expand Up @@ -219,6 +234,22 @@ open Opposite

variable [HasZeroMorphisms C]

/-- Transport a `NormalEpi` structure via an isomorphism of arrows. -/
def NormalEpi.ofArrowIso [HasZeroMorphisms C] {X Y : C} {f : X ⟶ Y}
(hf : NormalEpi f) {X' Y' : C} {f' : X' ⟶ Y'} (e : Arrow.mk f ≅ Arrow.mk f') :
NormalEpi f' where
W := hf.W
g := hf.g ≫ e.hom.left
w := by
have := Arrow.w e.hom
dsimp at this
rw [Category.assoc, this, reassoc_of% hf.w, zero_comp]
isColimit := by
refine (IsColimit.equivOfNatIsoOfIso ?_ _ _ ?_).1 hf.isColimit
· exact parallelPair.ext (Iso.refl _) (Arrow.leftFunc.mapIso e)
· exact Cofork.ext (Arrow.rightFunc.mapIso e) (by simp [Cofork.π])


/-- A normal mono becomes a normal epi in the opposite category. -/
def normalEpiOfNormalMonoUnop {X Y : Cᵒᵖ} (f : X ⟶ Y) (m : NormalMono f.unop) : NormalEpi f where
W := op m.Z
Expand Down
Loading