Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1359,6 +1359,7 @@ public import Mathlib.AlgebraicGeometry.Restrict
public import Mathlib.AlgebraicGeometry.Scheme
public import Mathlib.AlgebraicGeometry.Sites.BigZariski
public import Mathlib.AlgebraicGeometry.Sites.Etale
public import Mathlib.AlgebraicGeometry.Sites.Fpqc
public import Mathlib.AlgebraicGeometry.Sites.MorphismProperty
public import Mathlib.AlgebraicGeometry.Sites.Pretopology
public import Mathlib.AlgebraicGeometry.Sites.QuasiCompact
Expand Down
10 changes: 9 additions & 1 deletion Mathlib/AlgebraicGeometry/Cover/Sigma.lean
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ open CategoryTheory Limits
namespace AlgebraicGeometry.Scheme.Cover

variable {P : MorphismProperty Scheme.{u}} {S : Scheme.{u}} [IsZariskiLocalAtSource P]
[UnivLE.{v, u}] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P]
[UnivLE.{v, u}]

/-- If `𝒰` is a cover of `S`, this is the single object cover where the covering
object is the disjoint union. -/
Expand All @@ -37,6 +37,14 @@ noncomputable def sigma (𝒰 : Cover.{v} (precoverage P) S) : S.Cover (precover
obtain ⟨i, y, rfl⟩ := 𝒰.exists_eq s
refine ⟨default, Sigma.ι 𝒰.X i y, by simp [← Scheme.Hom.comp_apply]⟩

@[simp]
lemma presieve₀_sigma {S : Scheme.{u}} (𝒰 : Cover.{v} (precoverage P) S) :
𝒰.sigma.presieve₀ = Presieve.singleton (Sigma.desc 𝒰.f) := by
refine le_antisymm ?_ fun T g ⟨⟩ ↦ ⟨⟨⟩⟩
rw [Presieve.ofArrows_le_iff]
intro i
exact Presieve.singleton_self _

variable [P.IsMultiplicative] {𝒰 𝒱 : Scheme.Cover.{v} (precoverage P) S}

variable (𝒰) in
Expand Down
5 changes: 5 additions & 0 deletions Mathlib/AlgebraicGeometry/Morphisms/UnderlyingMap.lean
Original file line number Diff line number Diff line change
Expand Up @@ -130,6 +130,11 @@ def Scheme.Hom.cover {P : MorphismProperty Scheme.{u}} {X S : Scheme.{u}} (f : X
rw [singleton_mem_precoverage_iff]
exact ⟨f.surjective, hf⟩

@[simp]
lemma Scheme.Hom.presieve₀_cover {P : MorphismProperty Scheme.{u}} {X S : Scheme.{u}} (f : X ⟶ S)
(hf : P f) [Surjective f] : (f.cover hf).presieve₀ = Presieve.singleton f := by
simp [cover]

instance {P : MorphismProperty Scheme.{u}} {X S : Scheme.{u}} (f : X ⟶ S) (hf : P f)
[Surjective f] : Unique (Scheme.Hom.cover f hf).I₀ :=
inferInstanceAs <| Unique PUnit
Expand Down
40 changes: 39 additions & 1 deletion Mathlib/AlgebraicGeometry/Sites/BigZariski.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@ module

public import Mathlib.AlgebraicGeometry.Sites.Pretopology
public import Mathlib.CategoryTheory.Sites.Canonical
public import Mathlib.CategoryTheory.Sites.Preserves

/-!
# The big Zariski site of schemes

Expand All @@ -32,7 +34,7 @@ TODO:

universe v u

open CategoryTheory
open CategoryTheory Limits Opposite

namespace AlgebraicGeometry

Expand Down Expand Up @@ -71,4 +73,40 @@ instance subcanonical_zariskiTopology : zariskiTopology.Subcanonical := by

end Scheme

/-- Zariski sheaves preserve products. -/
lemma preservesLimitsOfShape_discrete_of_isSheaf_zariskiTopology {F : Scheme.{u}ᵒᵖ ⥤ Type v}
{ι : Type*} [Small.{u} ι] [Small.{v} ι] (hF : Presieve.IsSheaf Scheme.zariskiTopology F) :
PreservesLimitsOfShape (Discrete ι) F := by
apply (config := { allowSynthFailures := true }) preservesLimitsOfShape_of_discrete
intro X
have (i : ι) : Mono (Cofan.inj (Sigma.cocone (Discrete.functor <| unop ∘ X)) i) :=
inferInstanceAs <| Mono (Sigma.ι _ _)
refine Presieve.preservesProduct_of_isSheafFor F ?_ initialIsInitial
(Sigma.cocone (Discrete.functor <| unop ∘ X)) (coproductIsCoproduct' _) ?_ ?_
· apply hF.isSheafFor
convert (⊥_ Scheme).bot_mem_grothendieckTopology
rw [eq_bot_iff]
rintro Y f ⟨g, _, _, ⟨i⟩, _⟩
exact i.elim
· intro i j
exact CoproductDisjoint.isPullback_of_isInitial
(coproductIsCoproduct' <| Discrete.functor <| unop ∘ X) initialIsInitial
· exact hF.isSheafFor _ _ (sigmaOpenCover _).mem_grothendieckTopology

/-- If `F` is a locally directed diagram of open immersions (e.g., the diagram indexing
a coproduct). Then the colimit inclusions are a Zariski covering. -/
lemma ofArrows_ι_mem_zariskiTopology_of_isColimit {J : Type*} [Category J]
(F : J ⥤ Scheme.{u}) [∀ {i j : J} (f : i ⟶ j), IsOpenImmersion (F.map f)]
[(F.comp Scheme.forget).IsLocallyDirected] [Quiver.IsThin J] [Small.{u} J]
(c : Cocone F) (hc : IsColimit c) :
Sieve.ofArrows _ c.ι.app ∈ Scheme.zariskiTopology c.pt := by
let iso : c.pt ≅ colimit F := hc.coconePointUniqueUpToIso (colimit.isColimit F)
rw [← GrothendieckTopology.pullback_mem_iff_of_isIso (i := iso.inv)]
apply GrothendieckTopology.superset_covering _ ?_ ?_
· exact Sieve.ofArrows _ (colimit.ι F)
· rw [Sieve.ofArrows, Sieve.generate_le_iff]
rintro - - ⟨i⟩
exact ⟨_, 𝟙 _, c.ι.app i, ⟨i⟩, by simp [iso]⟩
· exact (Scheme.IsLocallyDirected.openCover F).mem_grothendieckTopology

end AlgebraicGeometry
Loading