Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 52 additions & 8 deletions Mathlib/Topology/Algebra/IsUniformGroup/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -144,48 +144,92 @@ section UniformConvergence

variable {ι : Type*} {l : Filter ι} {l' : Filter β} {f f' : ι → β → α} {g g' : β → α} {s : Set β}

@[to_additive]
@[to_additive (attr := to_fun)]
theorem TendstoUniformlyOnFilter.mul (hf : TendstoUniformlyOnFilter f g l l')
(hf' : TendstoUniformlyOnFilter f' g' l l') : TendstoUniformlyOnFilter (f * f') (g * g') l l' :=
fun u hu =>
((uniformContinuous_mul.comp_tendstoUniformlyOnFilter (hf.prodMk hf')) u hu).diag_of_prod_left

@[to_additive]
attribute [to_additive existing] TendstoUniformlyOnFilter.fun_mul

@[to_additive (attr := to_fun)]
theorem TendstoUniformlyOnFilter.div (hf : TendstoUniformlyOnFilter f g l l')
(hf' : TendstoUniformlyOnFilter f' g' l l') : TendstoUniformlyOnFilter (f / f') (g / g') l l' :=
fun u hu =>
((uniformContinuous_div.comp_tendstoUniformlyOnFilter (hf.prodMk hf')) u hu).diag_of_prod_left

@[to_additive]
attribute [to_additive existing] TendstoUniformlyOnFilter.fun_div

@[to_additive (attr := to_fun)]
theorem TendstoUniformlyOnFilter.inv (hf : TendstoUniformlyOnFilter f g l l') :
TendstoUniformlyOnFilter (f⁻¹) (g⁻¹) l l' :=
fun u hu ↦ uniformContinuous_inv.comp_tendstoUniformlyOnFilter hf u hu

attribute [to_additive existing] TendstoUniformlyOnFilter.fun_inv

@[to_additive (attr := to_fun)]
theorem TendstoUniformlyOn.mul (hf : TendstoUniformlyOn f g l s)
(hf' : TendstoUniformlyOn f' g' l s) : TendstoUniformlyOn (f * f') (g * g') l s := fun u hu =>
((uniformContinuous_mul.comp_tendstoUniformlyOn (hf.prodMk hf')) u hu).diag_of_prod

@[to_additive]
attribute [to_additive existing] TendstoUniformlyOn.fun_mul

@[to_additive (attr := to_fun)]
theorem TendstoUniformlyOn.div (hf : TendstoUniformlyOn f g l s)
(hf' : TendstoUniformlyOn f' g' l s) : TendstoUniformlyOn (f / f') (g / g') l s := fun u hu =>
((uniformContinuous_div.comp_tendstoUniformlyOn (hf.prodMk hf')) u hu).diag_of_prod

@[to_additive]
attribute [to_additive existing] TendstoUniformlyOn.fun_div

@[to_additive (attr := to_fun)]
theorem TendstoUniformlyOn.inv (hf : TendstoUniformlyOn f g l s) :
TendstoUniformlyOn (f⁻¹) (g⁻¹) l s :=
fun u hu ↦ uniformContinuous_inv.comp_tendstoUniformlyOn hf u hu

attribute [to_additive existing] TendstoUniformlyOn.fun_inv

@[to_additive (attr := to_fun)]
theorem TendstoUniformly.mul (hf : TendstoUniformly f g l) (hf' : TendstoUniformly f' g' l) :
TendstoUniformly (f * f') (g * g') l := fun u hu =>
((uniformContinuous_mul.comp_tendstoUniformly (hf.prodMk hf')) u hu).diag_of_prod

@[to_additive]
attribute [to_additive existing] TendstoUniformly.fun_mul

@[to_additive (attr := to_fun)]
theorem TendstoUniformly.div (hf : TendstoUniformly f g l) (hf' : TendstoUniformly f' g' l) :
TendstoUniformly (f / f') (g / g') l := fun u hu =>
((uniformContinuous_div.comp_tendstoUniformly (hf.prodMk hf')) u hu).diag_of_prod

@[to_additive]
attribute [to_additive existing] TendstoUniformly.fun_div

@[to_additive (attr := to_fun)]
theorem TendstoUniformly.inv (hf : TendstoUniformly f g l) :
TendstoUniformly (f⁻¹) (g⁻¹) l :=
fun u hu ↦ uniformContinuous_inv.comp_tendstoUniformly hf u hu

attribute [to_additive existing] TendstoUniformly.fun_inv

@[to_additive (attr := to_fun)]
theorem UniformCauchySeqOn.mul (hf : UniformCauchySeqOn f l s) (hf' : UniformCauchySeqOn f' l s) :
UniformCauchySeqOn (f * f') l s := fun u hu => by
simpa using (uniformContinuous_mul.comp_uniformCauchySeqOn (hf.prod' hf')) u hu

@[to_additive]
attribute [to_additive existing] UniformCauchySeqOn.fun_mul

@[to_additive (attr := to_fun)]
theorem UniformCauchySeqOn.div (hf : UniformCauchySeqOn f l s) (hf' : UniformCauchySeqOn f' l s) :
UniformCauchySeqOn (f / f') l s := fun u hu => by
simpa using (uniformContinuous_div.comp_uniformCauchySeqOn (hf.prod' hf')) u hu

attribute [to_additive existing] UniformCauchySeqOn.fun_div

@[to_additive (attr := to_fun)]
theorem UniformCauchySeqOn.inv (hf : UniformCauchySeqOn f l s) :
UniformCauchySeqOn (f⁻¹) l s :=
fun u hu ↦ by simpa using (uniformContinuous_inv.comp_uniformCauchySeqOn hf u hu)

attribute [to_additive existing] UniformCauchySeqOn.fun_inv

end UniformConvergence

section LocalUniformConvergence
Expand Down
Loading