Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion Mathlib/AlgebraicGeometry/IdealSheaf/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -437,7 +437,8 @@ instance : IdemCommSemiring X.IdealSheafData where
nsmul := nsmulRec
left_distrib := mul_inf
right_distrib := inf_mul
npow_zero _ := by ext; rfl
npow n I := I ^ n
npow_zero _ := by ext; simp [show (1 : X.IdealSheafData) = ⊤ from rfl]
npow_succ _ _ := by ext; rfl
bot_le _ := bot_le

Expand Down
86 changes: 84 additions & 2 deletions Mathlib/AlgebraicGeometry/Morphisms/FormallyUnramified.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Authors: Andrew Yang
-/
module

public import Mathlib.AlgebraicGeometry.Morphisms.Separated
public import Mathlib.AlgebraicGeometry.Morphisms.Proper
public import Mathlib.RingTheory.Ideal.IdempotentFG
public import Mathlib.RingTheory.RingHom.Unramified
public import Mathlib.RingTheory.Unramified.LocalRing
Expand Down Expand Up @@ -46,7 +46,10 @@ namespace AlgebraicGeometry
variable {X Y : Scheme.{u}} (f : X ⟶ Y)

/-- A morphism of schemes `f : X ⟶ Y` is formally unramified if for each affine `U ⊆ Y` and
`V ⊆ f ⁻¹' U`, The induced map `Γ(Y, U) ⟶ Γ(X, V)` is formally unramified. -/
`V ⊆ f ⁻¹' U`, The induced map `Γ(Y, U) ⟶ Γ(X, V)` is formally unramified.

See `FormallyUnramified.hom_ext` and `FormallyUnramified.of_hom_ext`
for the infinitesimal lifting criterion. -/
@[mk_iff]
class FormallyUnramified (f : X ⟶ Y) : Prop where
formallyUnramified_appLE (f) :
Expand Down Expand Up @@ -172,6 +175,85 @@ instance [FormallyUnramified f] [LocallyOfFiniteType f] (x : X) :
exact stalkMap f x
infer_instance

/--
Given any commuting diagram
```
Z' --→ X
| |
↓ ↓
Z --→ Y
```
With `X ⟶ Y` formally unramified and `Z' ⟶ Z` an infinitesimal thickening, there exists at most
one arrow `Z ⟶ X` making the diagram commute.
-/
@[stacks 04F1]
protected lemma hom_ext {Z' Z : Scheme} (i : Z' ⟶ Z) (hi : IsNilpotent i.ker) [IsClosedImmersion i]
(f : X ⟶ Y) [FormallyUnramified f]
{g₁ g₂ : Z ⟶ X} (hig : i ≫ g₁ = i ≫ g₂) (hgf : g₁ ≫ f = g₂ ≫ f) : g₁ = g₂ := by
have : IsDominant i := by
obtain ⟨n, hn⟩ := hi
rw [isDominant_iff, denseRange_iff_closure_range, ← i.support_ker,
← i.ker.support_pow (n + 1) (by simp), pow_succ, hn]
simp
refine Scheme.hom_ext_of_forall _ _ fun x ↦ ?_
obtain ⟨_, ⟨U, hU, rfl⟩, hxU, -⟩ :=
Y.isBasis_affineOpens.exists_subset_of_mem_open (Set.mem_univ (f (g₁ x))) isOpen_univ
obtain ⟨_, ⟨V, hV, rfl⟩, hxV, hVU : V ≤ f ⁻¹ᵁ U⟩ :=
X.isBasis_affineOpens.exists_subset_of_mem_open hxU (f ⁻¹ᵁ U).isOpen
have : g₁.base = g₂.base := by ext x; obtain ⟨x, rfl⟩ := i.surjective x; exact congr($hig x)
obtain ⟨_, ⟨W, hW, rfl⟩, hxW, hWV : W ≤ _⟩ := Z.isBasis_affineOpens.exists_subset_of_mem_open
(And.intro hxV (by simpa [← this])) (g₁ ⁻¹ᵁ V ⊓ g₂ ⁻¹ᵁ V).isOpen
refine ⟨W, hxW, ?_⟩
have := f.formallyUnramified_appLE hU hV hVU
algebraize [(f.appLE U V hVU).hom,
((g₁ ≫ f).appLE U W (by grw [hWV, inf_le_left, hVU]; rfl)).hom]
let ψ₁ : Γ(X, V) →ₐ[Γ(Y, U)] Γ(Z, W) := ⟨(g₁.appLE _ _ (hWV.trans inf_le_left)).hom, fun r ↦ by
simp [RingHom.algebraMap_toAlgebra, ← CategoryTheory.comp_apply, -CommRingCat.hom_comp,
Scheme.Hom.appLE_comp_appLE]⟩
let ψ₂ : Γ(X, V) →ₐ[Γ(Y, U)] Γ(Z, W) := ⟨(g₂.appLE _ _ (hWV.trans inf_le_right)).hom, fun r ↦ by
simp [RingHom.algebraMap_toAlgebra, ← CategoryTheory.comp_apply, -CommRingCat.hom_comp,
Scheme.Hom.appLE_comp_appLE, hgf, - Scheme.Hom.comp_appLE]⟩
suffices ψ₁ = ψ₂ by
simpa [ψ₁, ψ₂, -Iso.cancel_iso_hom_left, IsAffineOpen.isoSpec_hom] using
congr(hW.isoSpec.hom ≫ Spec.map (CommRingCat.ofHom ($this).toRingHom) ≫ hV.fromSpec)
refine Algebra.FormallyUnramified.ext' (i.app W).hom ?_ ψ₁ ψ₂ ?_
· obtain ⟨n, hn⟩ := hi
exact ⟨n, by simpa using congr(($hn).ideal ⟨W, hW⟩)⟩
· simp [ψ₁, ψ₂, ← CategoryTheory.comp_apply, -CommRingCat.hom_comp, hig,
Scheme.Hom.app_eq_appLE, Scheme.Hom.appLE_comp_appLE, - Scheme.Hom.comp_appLE]

/--
To show that `f : X ⟶ Y` is formally unramified,
it suffices to check for that every following commuting diagram
```
Spec R --→ X
| |
↓ ↓
Spec S --→ Y
```
with `S = R/I` for some `I² = 0`, there exists at most one arrow `Spec S ⟶ X` making
the diagram commute.
-/
protected lemma of_hom_ext (f : X ⟶ Y)
(H : ∀ (R S : CommRingCat) (φ : R ⟶ S) (_ : Function.Surjective φ)
(_ : RingHom.ker φ.hom ^ 2 = ⊥) (g₁ g₂ : Spec R ⟶ X)
(_ : Spec.map φ ≫ g₁ = Spec.map φ ≫ g₂) (_ : g₁ ≫ f = g₂ ≫ f), g₁ = g₂) :
FormallyUnramified f := by
refine ⟨fun {U hU V hV hVU} ↦ ?_⟩
letI := (f.appLE U V hVU).hom.toAlgebra
refine Algebra.FormallyUnramified.iff_comp_injective.mpr fun R _ _ I hI g₁ g₂ hg₁g₂ ↦ ?_
have hg₁ : f.appLE U V hVU ≫ CommRingCat.ofHom g₁ = CommRingCat.ofHom (algebraMap _ R) :=
CommRingCat.hom_ext g₁.comp_algebraMap
have hg₂ : f.appLE U V hVU ≫ CommRingCat.ofHom g₂ = CommRingCat.ofHom (algebraMap _ R) :=
CommRingCat.hom_ext g₂.comp_algebraMap
have := H (.of R) (.of (R ⧸ I)) (CommRingCat.ofHom (Ideal.Quotient.mkₐ Γ(Y, U) I))
Ideal.Quotient.mk_surjective (by simpa)
(Spec.map (CommRingCat.ofHom g₁) ≫ hV.fromSpec) (Spec.map (CommRingCat.ofHom g₂) ≫ hV.fromSpec)
(by simp only [← Spec.map_comp_assoc, ← CommRingCat.ofHom_comp, ← AlgHom.comp_toRingHom, *])
(by simp only [Category.assoc, ← hU.SpecMap_appLE_fromSpec f hV hVU, ← Spec.map_comp_assoc, *])
rw [cancel_mono, Spec.map_inj] at this
exact AlgHom.ext fun x ↦ congr($this x)

end FormallyUnramified

end AlgebraicGeometry
Loading