Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 101 additions & 4 deletions benchmarks/benchmarks/sparse_linalg_solve.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,16 @@
"""
Check the speed of the conjugate gradient solver.
"""
import inspect

import numpy as np
from numpy.testing import assert_equal

from .common import Benchmark, safe_import

with safe_import():
from scipy import linalg, sparse
from scipy.sparse.linalg import cg, minres, gmres, tfqmr, spsolve
from scipy.sparse.linalg import cg, minres, gmres, tfqmr, spsolve, LinearOperator
with safe_import():
from scipy.sparse.linalg import lgmres
with safe_import():
Expand All @@ -18,7 +20,11 @@
def _create_sparse_poisson1d(n):
# Make Gilbert Strang's favorite matrix
# http://www-math.mit.edu/~gs/PIX/cupcakematrix.jpg
P1d = sparse.diags([[-1]*(n-1), [2]*n, [-1]*(n-1)], [-1, 0, 1])
P1d = sparse.diags_array(
[[-1]*(n-1), [2]*n, [-1]*(n-1)],
offsets=[-1, 0, 1],
dtype=np.float64
)
assert_equal(P1d.shape, (n, n))
return P1d

Expand All @@ -27,12 +33,19 @@ def _create_sparse_poisson2d(n):
P1d = _create_sparse_poisson1d(n)
P2d = sparse.kronsum(P1d, P1d)
assert_equal(P2d.shape, (n*n, n*n))
return P2d.tocsr()
return sparse.csr_array(P2d)


def _create_sparse_poisson2d_coo(n):
P1d = _create_sparse_poisson1d(n)
P2d = sparse.kronsum(P1d, P1d)
assert_equal(P2d.shape, (n*n, n*n))
return sparse.coo_array(P2d)


class Bench(Benchmark):
params = [
[4, 6, 10, 16, 25, 40, 64, 100],
[4, 8, 16, 32, 64, 128, 256, 512],
['dense', 'spsolve', 'cg', 'minres', 'gmres', 'lgmres', 'gcrotmk',
'tfqmr']
]
Expand All @@ -57,6 +70,90 @@ def time_solve(self, n, solver):
self.mapping[solver](self.P_sparse, self.b)


class BatchedCG(Benchmark):
params = [
[2, 4, 6, 8, 16, 32, 64],
[1, 10, 100, 500, 1000, 5000, 10000]
]
param_names = ['(n,n)', 'batch_size']

def setup(self, n, batch_size):
if n >= 32 and batch_size >= 500:
raise NotImplementedError()
if n >= 16 and batch_size > 5000:
raise NotImplementedError()
rng = np.random.default_rng(42)

self.batched = "xp" in inspect.signature(LinearOperator.__init__).parameters
if self.batched:
P_sparse = _create_sparse_poisson2d_coo(n)
if batch_size > 1:
self.P_sparse = sparse.vstack(
[P_sparse] * batch_size, format="coo"
).reshape(batch_size, n*n, n*n)
self.b = rng.standard_normal((batch_size, n*n))
else:
self.P_sparse = P_sparse
self.b = rng.standard_normal(n*n)
else:
self.P_sparse = _create_sparse_poisson2d(n)
self.b = [rng.standard_normal(n*n) for _ in range(batch_size)]

def time_solve(self, n, batch_size):
if self.batched:
cg(self.P_sparse, self.b)
else:
for i in range(batch_size):
cg(self.P_sparse, self.b[i])


def _create_dense_random(n, batch_shape=None):
rng = np.random.default_rng(42)
M = rng.standard_normal((n*n, n*n))
reg = 1e-3
if batch_shape:
M = np.broadcast_to(M[np.newaxis, ...], (*batch_shape, n*n, n*n))

def matvec(x):
return np.squeeze(M.mT @ (M @ x[..., np.newaxis]), axis=-1) + reg * x

return LinearOperator(shape=M.shape, matvec=matvec, dtype=np.float64)


class BatchedCGDense(Benchmark):
params = [
[2, 4, 8, 16, 24],
[1, 10, 100, 500, 1000, 5000, 10000]
]
param_names = ['(n,n)', 'batch_size']

def setup(self, n, batch_size):
if n >= 24 and batch_size > 100:
raise NotImplementedError()
if n >= 16 and batch_size > 500:
raise NotImplementedError()
rng = np.random.default_rng(42)

self.batched = "xp" in inspect.signature(LinearOperator.__init__).parameters
if self.batched:
if batch_size > 1:
self.A = _create_dense_random(n, batch_shape=(batch_size,))
self.b = rng.standard_normal((batch_size, n*n))
else:
self.A = _create_dense_random(n)
self.b = rng.standard_normal(n*n)
else:
self.A = _create_dense_random(n)
self.b = [rng.standard_normal(n*n) for _ in range(batch_size)]

def time_solve(self, n, batch_size):
if self.batched:
cg(self.A, self.b)
else:
for i in range(batch_size):
cg(self.A, self.b[i])


class Lgmres(Benchmark):
params = [
[10, 50, 100, 1000, 10000],
Expand Down
4 changes: 2 additions & 2 deletions doc/source/_templates/autosummary/class.rst
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,12 @@
.. autosummary::
:toctree:
{% for item in all_methods %}
{%- if not item.startswith('_') or item in ['__call__', '__mul__', '__getitem__', '__len__', '__pow__'] %}
{%- if not item.startswith('_') or item in ['__call__', '__mul__', '__getitem__', '__len__', '__pow__', '__matmul__', '__truediv__', '__add__', '__rmul__', '__rmatmul__'] %}
{{ name }}.{{ item }}
{%- endif -%}
{%- endfor %}
{% for item in inherited_members %}
{%- if item in ['__call__', '__mul__', '__getitem__', '__len__', '__pow__'] %}
{%- if item in ['__call__', '__mul__', '__getitem__', '__len__', '__pow__', '__matmul__', '__truediv__', '__add__', '__rmul__', '__rmatmul__'] %}
{{ name }}.{{ item }}
{%- endif -%}
{%- endfor %}
Expand Down
3 changes: 2 additions & 1 deletion doc/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,8 @@
# Generate plots for example sections
numpydoc_use_plots = True
np_docscrape.ClassDoc.extra_public_methods = [ # should match class.rst
'__call__', '__mul__', '__getitem__', '__len__',
'__call__', '__mul__', '__getitem__', '__len__', '__pow__', '__matmul__',
'__truediv__', '__add__', '__rmul__', '__rmatmul__'
]

# -----------------------------------------------------------------------------
Expand Down
Loading