Skip to content

malhanpraveen/sbom2csv

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sbom2csv

sbom2csv is a tool for converting Software Bill of Materials (SBOM) from JSON to CSV format.

Installation

Describe how to install your tool. If it's available via PyPI, you can simply use:

pip install sbom2csv

Usage

Here's how you can use sbom2csv:

sbom2csv -i input.json -f csv -o output.csv

CSV Output Format

The generated CSV file will contain the following columns extracted from the SBOM components:

Column Description Source Field
Name Component name name
Version Component version version
Description Component description description
Developer Component author/developer author
License License identifier (SPDX format when available) licenses[0].license.id
User Document Link to component website/documentation externalReferences (type: "website")
PURL Package URL - standardized identifier purl

Example CSV Output

Name,Version,Description,Developer,License,User Document,PURL
express,4.21.2,"Fast, unopinionated, minimalist web framework",TJ Holowaychuk <tj@vision-media.ca>,MIT,http://expressjs.com/,pkg:npm/express@4.21.2
lodash,4.17.19,Lodash modular utilities.,John-David Dalton <john.david.dalton@gmail.com>,MIT,https://lodash.com/,pkg:npm/lodash@4.17.19

Notes

  • The tool processes the components array from CycloneDX JSON format SBOMs
  • Empty fields will be included as blank values in the CSV
  • If multiple licenses exist, only the first license ID is extracted
  • The User Document field extracts the first external reference with type "website"

Contributing

Contributions are welcome! Please read our contributing guidelines for details.

License

This project is licensed under the Yuan Zhou - see the LICENSE file for details.

About

Tool to export a Cyclone DX SBOM to a CSV

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%