Evidence-passing Algebraic Effects for Elixir.
Skuld is a clean, efficient implementation of Algebraic Effects using evidence-passing style with CPS (continuation-passing style) for control effects. It provides scoped handlers, coroutines via Yield, and composable effect stacks.
Skuld's client API looks quite similar to Freyja, but the implementation is very different. Skuld performs better and has a simpler and more coherent API, and is (arguably) easier to understand.
- Evidence-passing style: Handlers are looked up directly from a map in the dynamic environment
- CPS for control effects: Enables proper support for control flow effects like Yield and Throw
- Scoped handlers: Handlers are automatically installed/restored with proper cleanup
- Composable: Multiple effects can be stacked and composed naturally
- Single type: Single unified
computationtype andcompmacro for all effectful code (unlike Freyja, there's no first-order / higher-order split) - Auto-lifting: Plain values are automatically lifted to computations,
enabling ergonomic patterns like
ifwithoutelseand implicit final returns
Add skuld to your list of dependencies in mix.exs (see the Hex package for the current version):
def deps do
[
{:skuld, "~> x.y"}
]
enduse Skuld.Syntax
alias Skuld.Comp
alias Skuld.Effects.{State, Reader, Writer, Throw, Yield}
# Define a computation using the comp macro
defmodule Example do
defcomp example() do
# Read from Reader effect
config <- Reader.ask()
# Get and update State
count <- State.get()
_ <- State.put(count + 1)
# Write to Writer effect
_ <- Writer.tell("processed item #{count}")
{config, count} # final expression auto-lifted (no return needed)
end
end
# Run with handlers installed
Example.example()
|> Reader.with_handler(:my_config)
|> State.with_handler(0, output: fn r, st -> {r, {:final_state, st}} end)
|> Writer.with_handler([], output: fn r, w -> {r, {:log, w}} end)
|> Comp.run!()
#=> {{{:my_config, 0}, {:final_state, 1}}, {:log, ["processed item 0"]}}All examples below assume the following setup (paste once into IEx):
use Skuld.Syntax
alias Skuld.Comp
alias Skuld.Effects.{
State, Reader, Writer, Throw, Yield,
FxList, FxFasterList,
Fresh, Bracket, Query, EventAccumulator, EffectLogger,
DBTransaction, EctoPersist
}
alias Skuld.Effects.DBTransaction.Noop, as: NoopTx
alias Skuld.Effects.DBTransaction.Ecto, as: EctoTxMutable state within a computation:
comp do
n <- State.get()
_ <- State.put(n + 1)
n
end
|> State.with_handler(0, output: fn result, state -> {result, {:final_state, state}} end)
|> Comp.run!()
#=> {0, {:final_state, 1}}Read-only environment:
comp do
name <- Reader.ask()
"Hello, #{name}!"
end
|> Reader.with_handler("World")
|> Comp.run!()
#=> "Hello, World!"Accumulating output (use output: to include the log in the result):
comp do
_ <- Writer.tell("step 1")
_ <- Writer.tell("step 2")
:done
end
|> Writer.with_handler([], output: fn result, log -> {result, Enum.reverse(log)} end)
|> Comp.run!()
#=> {:done, ["step 1", "step 2"]}Error handling with the catch clause:
comp do
x = -1
_ <- if x < 0, do: Throw.throw({:error, "negative"}) # nil auto-lifted when false
x * 2
catch
err -> {:recovered, err}
end
|> Throw.with_handler()
|> Comp.run!()
#=> {:recovered, {:error, "negative"}}The catch clause desugars to Throw.catch_error/2:
# The above is equivalent to:
Throw.catch_error(
comp do
x = -1
_ <- if x < 0, do: Throw.throw({:error, "negative"})
x * 2
end,
fn err -> comp do {:recovered, err} end end
)
|> Throw.with_handler()
|> Comp.run!()
#=> {:recovered, {:error, "negative"}}Elixir's raise, throw, and exit are automatically converted to Throw effects
when they occur during computation execution. This works even in the first expression
of a comp block:
# Helper functions that raise/throw
defmodule Risky do
def boom!, do: raise "oops!"
def throw_ball!, do: throw(:ball)
end
# Elixir raise is caught and converted - even as the first expression
comp do
Risky.boom!()
catch
%{kind: :error, payload: %RuntimeError{message: msg}} -> {:caught_raise, msg}
end
|> Throw.with_handler()
|> Comp.run!()
#=> {:caught_raise, "oops!"}
# Elixir throw is also converted
comp do
Risky.throw_ball!()
catch
%{kind: :throw, payload: value} -> {:caught_throw, value}
end
|> Throw.with_handler()
|> Comp.run!()
#=> {:caught_throw, :ball}The converted error is a map with :kind, :payload, and :stacktrace keys,
allowing you to handle different error types uniformly.
The else clause handles pattern match failures in <- bindings. Since else
uses the Throw effect internally, you need a Throw handler:
comp do
{:ok, x} <- {:error, "something went wrong"} # auto-lifted
x * 2
else
{:error, reason} -> {:match_failed, reason}
end
|> Throw.with_handler()
|> Comp.run!()
#=> {:match_failed, "something went wrong"}Both clauses can be used together. The else must come before catch:
# Returns {:ok, x}, {:error, reason}, or throws
might_fail = fn x ->
cond do
x < 0 -> {:error, :negative} # auto-lifted
x > 100 -> Throw.throw(:too_large)
true -> {:ok, x} # auto-lifted
end
end
# Throw case (x > 100):
comp do
{:ok, x} <- might_fail.(150)
x * 2
else
{:error, reason} -> {:match_failed, reason}
catch
err -> {:caught_throw, err}
end
|> Throw.with_handler()
|> Comp.run!()
#=> {:caught_throw, :too_large}
# Match failure case (x < 0):
comp do
{:ok, x} <- might_fail.(-5)
x * 2
else
{:error, reason} -> {:match_failed, reason}
catch
err -> {:caught_throw, err}
end
|> Throw.with_handler()
|> Comp.run!()
#=> {:match_failed, :negative}The semantic ordering is catch(else(body)), meaning:
elsehandles pattern match failures from the main computationcatchhandles throws from both the main computation AND the else handler
Coroutine-style suspension and resumption:
generator = comp do
_ <- Yield.yield(1)
_ <- Yield.yield(2)
_ <- Yield.yield(3)
:done
end
# Collect all yielded values
generator
|> Yield.with_handler()
|> Yield.collect()
#=> {:done, :done, [1, 2, 3], _env}
# Or drive with a custom function
generator
|> Yield.with_handler()
|> Yield.run_with_driver(fn yielded ->
IO.puts("Got: #{yielded}")
{:continue, :ok}
end)
# Prints: Got: 1, Got: 2, Got: 3
#=> {:done, :done, _env}Effectful list operations:
comp do
results <- FxList.fx_map([1, 2, 3], fn item ->
comp do
count <- State.get()
_ <- State.put(count + 1)
item * 2
end
end)
results
end
|> State.with_handler(0, output: fn result, state -> {result, {:final_state, state}} end)
|> Comp.run!()
#=> {[2, 4, 6], {:final_state, 3}}Note: For large iteration counts (10,000+), use
Yield-based coroutines instead ofFxListfor better performance. See the FxList module docs for details.
High-performance variant of FxList using Enum.reduce_while:
comp do
results <- FxFasterList.fx_map([1, 2, 3], fn item ->
comp do
count <- State.get()
_ <- State.put(count + 1)
item * 2
end
end)
results
end
|> State.with_handler(0, output: fn result, state -> {result, {:final_state, state}} end)
|> Comp.run!()
#=> {[2, 4, 6], {:final_state, 3}}Note: FxFasterList is ~2x faster than FxList but has limited Yield/Suspend support. Use it when performance is critical and you only use Throw for error handling.
State, Reader, and Writer all support explicit tags for multiple independent instances.
Use an atom as the first argument to operations, and tag: :name in the handler:
# Multiple independent state values
comp do
_ <- State.put(:counter, 0)
_ <- State.modify(:counter, &(&1 + 1))
count <- State.get(:counter)
_ <- State.put(:name, "alice")
name <- State.get(:name)
{count, name}
end
|> State.with_handler(0, tag: :counter)
|> State.with_handler("", tag: :name)
|> Comp.run!()
#=> {1, "alice"}
# Multiple independent reader contexts
comp do
db <- Reader.ask(:db)
api <- Reader.ask(:api)
{db, api}
end
|> Reader.with_handler(%{host: "localhost"}, tag: :db)
|> Reader.with_handler(%{url: "https://api.example.com"}, tag: :api)
|> Comp.run!()
#=> {%{host: "localhost"}, %{url: "https://api.example.com"}}
# Multiple independent writer logs
comp do
_ <- Writer.tell(:audit, "user logged in")
_ <- Writer.tell(:metrics, {:counter, :login})
_ <- Writer.tell(:audit, "viewed dashboard")
:ok
end
|> Writer.with_handler([], tag: :audit, output: fn r, log -> {r, Enum.reverse(log)} end)
|> Writer.with_handler([], tag: :metrics, output: fn r, log -> {r, Enum.reverse(log)} end)
|> Comp.run!()
#=> {{:ok, ["user logged in", "viewed dashboard"]}, [{:counter, :login}]}Generate fresh/unique values (sequential integers and deterministic UUIDs):
# Generate sequential integers (default starts at 0)
comp do
id1 <- Fresh.fresh()
id2 <- Fresh.fresh()
{id1, id2}
end
|> Fresh.with_handler()
|> Comp.run!()
#=> {0, 1}
# Seed the counter to start from a different value
comp do
id1 <- Fresh.fresh()
id2 <- Fresh.fresh()
{id1, id2}
end
|> Fresh.with_handler(seed: 1000)
|> Comp.run!()
#=> {1000, 1001}
# Generate deterministic UUIDs (v5) - reproducible given the same namespace
namespace = Uniq.UUID.uuid4()
comp do
uuid1 <- Fresh.fresh_uuid()
uuid2 <- Fresh.fresh_uuid()
{uuid1, uuid2}
end
|> Fresh.with_handler(namespace: namespace)
|> Comp.run!()
#=> {"550e8400-...", "6ba7b810-..."}
# Same namespace always produces same sequence - great for testing!Safe resource acquisition and cleanup (like try/finally):
# Track resource lifecycle with State
comp do
result <- Bracket.bracket(
# Acquire
comp do
_ <- State.put(:acquired)
:resource
end,
# Release (always runs)
fn _resource ->
comp do
_ <- State.put(:released)
:ok
end
end,
# Use
fn resource ->
{:used, resource} # auto-lifted
end
)
final_state <- State.get()
{result, final_state}
end
|> State.with_handler(:init)
|> Comp.run!()
#=> {{:used, :resource}, :released}Use Bracket.finally/2 for simpler cleanup without resource passing:
Bracket.finally(
comp do
_ <- State.put(:working)
:done
end,
comp do
_ <- State.put(:cleaned_up)
:ok
end
)
|> State.with_handler(:init, output: fn r, s -> {r, s} end)
|> Comp.run!()
#=> {:done, :cleaned_up}Database transactions with automatic commit/rollback:
# Normal completion - transaction commits
comp do
result <- DBTransaction.transact(comp do
{:user_created, 123}
end)
result
end
|> NoopTx.with_handler()
|> Comp.run!()
#=> {:user_created, 123}
# Explicit rollback
comp do
result <- DBTransaction.transact(comp do
_ <- DBTransaction.rollback(:validation_failed)
:never_reached
end)
result
end
|> NoopTx.with_handler()
|> Comp.run!()
#=> {:rolled_back, :validation_failed}The same domain code works with different handlers - swap Noop for Ecto in production:
# Domain logic - unchanged regardless of handler
create_order = fn user_id, items ->
comp do
result <- DBTransaction.transact(comp do
# Imagine these are real Ecto operations
order = %{id: 1, user_id: user_id, items: items}
order
end)
result
end
end
# Production: real Ecto transactions (won't work in IEX!)
create_order.(123, [:item_a, :item_b])
|> EctoTx.with_handler(MyApp.Repo)
|> Comp.run!()
#=> %{id: 1, user_id: 123, items: [:item_a, :item_b]}
# Testing: no database, same domain code
create_order.(123, [:item_a, :item_b])
|> NoopTx.with_handler()
|> Comp.run!()
#=> %{id: 1, user_id: 123, items: [:item_a, :item_b]}Backend-agnostic data queries with pluggable handlers:
# Define a query module (in real code, this would have actual implementations)
defmodule MyQueries do
def find_user(%{id: id}), do: %{id: id, name: "User #{id}"}
end
# Runtime: dispatch to actual query modules
comp do
user <- Query.request(MyQueries, :find_user, %{id: 123})
user
end
|> Query.with_handler(%{MyQueries => :direct})
|> Comp.run!()
#=> %{id: 123, name: "User 123"}
# Test: stub responses
comp do
user <- Query.request(MyQueries, :find_user, %{id: 456})
user
end
|> Query.with_test_handler(%{
Query.key(MyQueries, :find_user, %{id: 456}) => %{id: 456, name: "Stubbed"}
})
|> Throw.with_handler()
|> Comp.run!()
#=> %{id: 456, name: "Stubbed"}Accumulate domain events during computation (built on Writer):
comp do
_ <- EventAccumulator.emit(%{type: :user_created, id: 1})
_ <- EventAccumulator.emit(%{type: :email_sent, to: "user@example.com"})
:ok
end
|> EventAccumulator.with_handler(output: fn result, events -> {result, events} end)
|> Comp.run!()
#=> {:ok, [%{type: :user_created, id: 1}, %{type: :email_sent, to: "user@example.com"}]}Capture effect invocations for replay, resume, and retry:
# Capture a log of effects
{{result, log}, _env} = (
comp do
x <- State.get()
_ <- State.put(x + 10)
y <- State.get()
{x, y}
end
|> EffectLogger.with_logging()
|> State.with_handler(0)
|> Comp.run()
)
result
#=> {0, 10}
# The log captures each effect invocation with its result
log
#=> %Skuld.Effects.EffectLogger.Log{
#=> effect_queue: [
#=> %EffectLogEntry{sig: State, data: %State.Get{}, value: 0, state: :executed},
#=> %EffectLogEntry{sig: State, data: %State.Put{value: 10}, value: %Change{old: 0, new: 10}, state: :executed},
#=> %EffectLogEntry{sig: State, data: %State.Get{}, value: 10, state: :executed}
#=> ],
#=> ...
#=> }
# Replay with different initial state - uses logged values instead of executing
{{replayed, _log2}, _env2} = (
comp do
x <- State.get()
_ <- State.put(x + 10)
y <- State.get()
{x, y}
end
|> EffectLogger.with_logging(log)
|> State.with_handler(999) # Different initial state - ignored during replay!
|> Comp.run()
)
replayed
#=> {0, 10} # Same result - values came from log, not from State handlerEcto database operations as effects (requires Ecto):
# Example (won't work in IEx!)
comp do
user <- EctoPersist.insert(User.changeset(%User{}, %{name: "Alice"}))
order <- EctoPersist.insert(Order.changeset(%Order{}, %{user_id: user.id}))
{user, order}
end
|> EctoPersist.with_handler(MyApp.Repo)
|> Comp.run!()Note: EctoPersist wraps Ecto Repo operations. See the module docs for
insert,update,delete,insert_all,update_all,delete_all, andupsert.
Skuld uses evidence-passing style where:
- Handlers are stored in the environment as functions
- Effects look up their handler and call it directly
- CPS enables control effects (Yield, Throw) to manipulate continuations
- Scoped handlers automatically manage handler installation/cleanup
Skuld is a cleaner, faster alternative to Freyja:
| Aspect | Freyja | Skuld |
|---|---|---|
| Effect representation | Freer monad + Hefty algebras | Evidence-passing CPS |
| Computation types | Freer + Hefty |
Just computation |
| Control effects | Hefty (higher-order) | Direct CPS |
| Handler lookup | Search through handler list | Direct map lookup |
| Macro system | con + hefty |
Single comp |
Skuld's performance advantage comes from avoiding Freer monad object allocation, continuation queue management, and linear search for handlers.
Benchmark comparing Skuld against pure baselines and minimal effect implementations.
Run with mix run bench/skuld_benchmark.exs.
What's being measured: A loop that increments a counter from 0 to N using
State.get() / State.put(n + 1) operations. This exercises the core effect
invocation path repeatedly, measuring per-operation overhead.
| Target | Pure/Rec | Monad | Evf | Evf/CPS | Skuld/Nest | Skuld/FxFL |
|---|---|---|---|---|---|---|
| 500 | 4 µs | 10 µs | 17 µs | 17 µs | 141 µs | 54 µs |
| 1000 | 28 µs | 55 µs | 56 µs | 58 µs | 255 µs | 166 µs |
| 2000 | 34 µs | 78 µs | 91 µs | 97 µs | 558 µs | 325 µs |
| 5000 | 82 µs | 189 µs | 244 µs | 258 µs | 1.42 ms | 836 µs |
| 10000 | 145 µs | 157 µs | 298 µs | 325 µs | 2.3 ms | 960 µs |
Implementations compared:
- Pure/Rec - Non-effectful baseline using tail recursion with map state
- Monad - Simple state monad (
fn state -> {val, state} end) with no effect system - Evf - Flat evidence-passing, direct-style (no CPS) - can't support control effects
- Evf/CPS - Flat evidence-passing with CPS - isolates CPS overhead (~1.1x vs Evf)
- Skuld/Nest - Skuld with nested
Comp.bindcalls (typical usage pattern) - Skuld/FxFL - Skuld with
FxFasterListiteration (optimized for collections)
| Target | FxFasterList | FxList | Yield |
|---|---|---|---|
| 1000 | 97 µs (0.10 µs/op) | 200 µs (0.20 µs/op) | 147 µs (0.15 µs/op) |
| 5000 | 492 µs (0.10 µs/op) | 959 µs (0.19 µs/op) | 762 µs (0.15 µs/op) |
| 10000 | 1.02 ms (0.10 µs/op) | 2.71 ms (0.27 µs/op) | 1.52 ms (0.15 µs/op) |
| 50000 | 5.1 ms (0.10 µs/op) | - | 7.58 ms (0.15 µs/op) |
| 100000 | 10.02 ms (0.10 µs/op) | - | 14.9 ms (0.15 µs/op) |
Iteration options:
- FxFasterList - Uses
Enum.reduce_while, fastest option (~2x faster than FxList) - FxList - Uses
Comp.bindchains, supports full Yield/Suspend resume semantics - Yield - Coroutine-style suspend/resume, use when you need interruptible iteration
All three maintain constant per-operation cost as N grows.
- CPS overhead is minimal - Evf/CPS is only ~1.1x slower than direct-style Evf
- Skuld overhead (~7x vs Evf/CPS) comes from scoped handlers, exception handling, and auto-lifting
- FxFasterList is the fastest iteration strategy when you don't need Yield semantics
- Per-op cost is constant - no quadratic blowup at scale
MIT License - see LICENSE for details.