tensorflow-1.0
yolo_tiny: https://drive.google.com/file/d/0B-yiAeTLLamRekxqVE01Yi1RRlk/view?usp=sharing
	mv yolo_tiny.ckpt models/pretrain/ 
- 
Download the training, validation and test data wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
- 
Extract all of these tars into one directory named VOCdevkittar xvf VOCtrainval_06-Nov-2007.tar tar xvf VOCtest_06-Nov-2007.tar
- 
It should have this basic structure $VOCdevkit/ # development kit $VOCdevkit/VOCcode/ # VOC utility code $VOCdevkit/VOC2007 # image sets, annotations, etc. # ... and several other directories ...
- 
Create symlinks for the PASCAL VOC dataset cd $YOLO_ROOT/data ln -s $VOCdevkit VOCdevkit2007Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects. 
python tools/preprocess_pascal_voc.py
python tools/train.py -c conf/train.cfg
- 
transform your training data to text_record file(the format reference to pascal_voc) 
- 
write your own train-configure file 
- 
train (python tools/train.py -c $your_configure_file) 
python demo.py