Skip to content

nitinnat/Consensus-Based-Vertically-Partitioned-Multi-layer-Perceptrons-for-Edge-Computing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code accompanying the paper - https://www.researchgate.net/publication/355172460_Consensus_Based_Vertically_Partitioned_Multi-layer_Perceptrons_for_Edge_Computing

Paper Description

Storing large volumes of data on distributed devices has become commonplace in recent years. Applications involving sensors, for example, capture data in different modalities including image, video, audio, GPS and others. Novel distributed algorithms are required to learn from this rich, multi-modal data. In this paper, we present an algorithm for learning consensus based multi-layer perceptrons on resource-constrained devices. Assuming nodes (devices) in the distributed system are arranged in a graph and contain vertically partitioned data and labels, the goal is to learn a global function that minimizes the loss. Each node learns a feed-forward multi-layer perceptron and obtains a loss on data stored locally. It then gossips with a neighbor, chosen uniformly at random, and exchanges information about the loss. The updated loss is used to run a back propagation algorithm and adjust local weights appropriately. This method enables nodes to learn the global function without exchange of data in the network. Empirical results reveal that the consensus algorithm converges to the centralized model and has performance comparable to centralized multi-layer perceptrons and tree-based algorithms including random forests and gradient boosted decision trees. Since it is completely decentralized, scalable with network size, can be used for binary and multi-class problems, not affected by feature overlap, and has good empirical convergence properties, it can be used for on-device machine learning.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •