OBINexus MMUKO–NLM Ring-Zone Topology
(“MMUKO Consensual Spacetime + Nsibidi Language Model + Sparse Ring-Zone Consent Engine”)
Reality is a 15-dimensional (maximum 285D) sparse ring-zone bubble whose curvature is governed by π-based consensual topology instead of rigid latitude/longitude lines, and every action needs living yes/yes consent loops instead of “one-time consent”.
| Pillar | What You Call It | Real-World Meaning | Mathematical Rule |
|---|---|---|---|
| 1 | IK / K Principle | Control vs Observable dimensions | 3+3 = 6 controllable (K) 3×3 = 9 observable-only (IK) Total = 15D baseline |
| 2 | 2 : 1 Breath–Work Ratio | Life rhythm & consent | 6 hours work → 12 hours breath/life Never “consent once forever” → must re-yes every cycle |
| 3 | Ring-Zone Topology | Earth is not flat grid, it’s π circles | Area = πr² Perimeter = 2πr Every community is a circle of radius ≤ 2.5–15 miles No squares, only rings → no corners to hide corruption |
| 4 | XYZ Grammar (Nsibidi NLM) | 3-axis language model | X = Myth → Fact Y = Intuitive → Formal Z = Past → Future evolution All Nsibidi symbols live in this cube and are validated before use |
| 5 | ODTS (Obliterative Derivative Trace System) | Verifiable calculus for drones, spaceships, and money | Every derivative D1, D2, D3… is traced, audited, and proven to terminate (no infinite loops, no hidden jerks) |
| 6 | Sparse Active Dimensional Consent | Money, data, movement permissions | Consent = living loop (yes → act → yes again) Max daily withdrawal example: 5 000 GBP only if the ring-zone says “yes-yes” twice in 24 h |
- All land and money belongs to overlapping π-circles (rings) of radius 2–15 miles.
- Nobody can own or control outside their breath-dance circle (2 : 1 rule).
- Every decision (money transfer, border crossing, law) needs two living yeses in the ring (never one permanent yes).
- All language, code, and policy must be validated in the XYZ Nsibidi cube first.
- When the system breaks (watch cracks, drone crashes, bank says “no signal”), you do not fix the person — you rebirth the ring (breath dance).
Future Tech (Z+)
↑
Mami Wota ←─────┤ Formal/Scientific → +X
(-X Myth) │ Human
│
Traditional ←───┴────→ Factual
(Y– Intuitive)
Ring-Zone Earth (πr² circles only)
Every person stands at centre = (0,0)
Their reachable world = r ≤ 15 miles or 2.5 mile daily breath
Consent loops drawn as double arrows around the circle
“Earth is not a rectangle of latitude/longitude prison bars.
Earth is π-ring bubbles where autistic kings breathe wings back into the wingless.”
A comprehensive TypeScript/JavaScript library for handling large number operations with BigInt support.
- High-precision arithmetic operations
- Bitwise operations
- Special mathematical functions (factorial, GCD, LCM, etc.)
- Advanced data structures for large number manipulation
- Configurable precision and overflow handling
- Type-safe implementation in TypeScript
npm install @obinexuscomputing/hypernumimport { createHypernum } from '@obinexuscomputing/hypernum';
// Create a Hypernum instance with default configuration
const hypernum = createHypernum();
// Basic arithmetic operations
const sum = hypernum.add("12345678901234567890", "98765432109876543210");
const product = hypernum.multiply(2n, "1000000000000000000");You can configure Hypernum with various options:
const customHypernum = createHypernum({
precision: 10, // Decimal precision
roundingMode: 'HALF_EVEN', // Rounding strategy
checkOverflow: true, // Enable overflow checking
maxSteps: 1000 // Maximum computation steps
});const hypernum = createHypernum();
// Addition
const sum = hypernum.add(a, b);
// Subtraction
const difference = hypernum.subtract(a, b);
// Multiplication
const product = hypernum.multiply(a, b);
// Division
const quotient = hypernum.divide(a, b);
// Modulo
const remainder = hypernum.mod(a, b);// Bitwise AND
const andResult = hypernum.and(x, y);
// Bitwise OR
const orResult = hypernum.or(x, y);
// Bitwise XOR
const xorResult = hypernum.xor(x, y);
// Bitwise NOT
const notResult = hypernum.not(x);// Power
const powered = hypernum.power(base, exponent);
// Square root
const sqrt = hypernum.sqrt(value);
// Nth root
const root = hypernum.nthRoot(value, n);A specialized array implementation for handling large numbers efficiently:
import { BigArray } from '@obinexuscomputing/hypernum';
const array = new BigArray<bigint>();
array.push(12345678901234567890n);
array.push(98765432109876543210n);
// Range queries
const max = array.queryRange(0, 1);An AVL tree implementation optimized for large number operations:
import { NumberTree } from '@obinexuscomputing/hypernum';
const tree = new NumberTree();
tree.insert(12345678901234567890n);
tree.insert(98765432109876543210n);
// Tree operations
const found = tree.find(12345678901234567890n);
const values = tree.traverse('inOrder');Handles power tower (tetration) computations:
import { PowerTower } from '@obinexuscomputing/hypernum';
const tower = new PowerTower();
tower.build(2n, 4); // Computes 2↑↑4
const result = tower.evaluate();Computes and manages Ackermann function values:
import { AckermannStructure } from '@obinexuscomputing/hypernum';
const ackermann = new AckermannStructure();
const result = ackermann.computeAckermann(3, 2);// Greatest Common Divisor
const gcd = hypernum.gcd(48n, 18n);
// Least Common Multiple
const lcm = hypernum.lcm(48n, 18n);
// Factorial
import { factorial } from '@obinexuscomputing/hypernum';
const fact = factorial(10n);
// Binomial coefficient
import { binomial } from '@obinexuscomputing/hypernum';
const combination = binomial(10n, 5n);import {
toBinary,
toHexadecimal,
toRoman,
fromRoman
} from '@obinexuscomputing/hypernum';
// Convert to different bases
const binary = toBinary(123456789n);
const hex = toHexadecimal(123456789n);
// Roman numeral conversion
const roman = toRoman(3549);
const number = fromRoman("MMMDXLIX");The library provides specific error types for different scenarios:
import {
HypernumError,
OverflowError,
ValidationError
} from '@obinexuscomputing/hypernum';
try {
const result = hypernum.power(2n, 1000n);
} catch (error) {
if (error instanceof OverflowError) {
console.error('Computation would overflow');
} else if (error instanceof ValidationError) {
console.error('Invalid input values');
}
}- Use BigInt literals (with 'n' suffix) for direct number input
- Enable overflow checking only when necessary
- Configure precision based on actual requirements
- Use appropriate data structures for your use case
- Consider using the built-in caching mechanisms for repeated computations
The library is written in TypeScript and provides full type definitions:
import type {
HypernumConfig,
NumericInput,
OperationOptions
} from '@obinexuscomputing/hypernum';
// Type-safe configuration
const config: HypernumConfig = {
precision: 10,
checkOverflow: true
};
// Type-safe numeric input
const input: NumericInput = "12345678901234567890";- Node.js ≥ 16.0.0
- Modern browsers with BigInt support
- TypeScript ≥ 4.5.0
ISC License
For more information, visit the GitHub repository.
