Executing a Spring Batch Job from a REST API is a common use case.
This project demonstrates how to implement a Spring Batch Job as a Spring Rest service. It implements a hypothetical use case to generate Credit card statements containing aggregate daily transaction amounts date-wise for a particular month.
- Reads Credit card accounts from a MongoDB collection
accountsin databaseaccount_dband partition on these account numbers for high performance. - Reads transactions from MongoDB collection
transactionsin databasetransaction_dbusing pagination. Aggregates transaction amounts per day. - Processes the date-wise transaction amount and writes the output to MongoDB collection
statementsin databasestatement_db. - It is fault-tolerant i.e. try to recover from transient failures and skip bad records.
- It supports restartability from last failure point.
Clone this repository, import in your favourite IDE as either Maven or Gradle project. Requires Java 21, Spring boot 3.2.0+ and Spring batch 5.1.0+.
Application is bundled with Spring boot Docker compose.
- If you have docker installed, then simply run the application in
dockerprofile by passingspring.profiles.active=dockeras program argument from your IDE. - Depending on your current working directory in IDE, you may need to change
spring.docker.compose.file=spring-boot-mongodb-auditing/compose.ymltospring.docker.compose.file=compose.ymlinapplication-docker.yml - Make sure the host ports mapped in
Docker compose fileare available or change the ports and do the respective changes in database configurationsapplication-docker.yml
Change to your MongoDB URI in application.yml file as follows.
spring:
datasource:
url: <Your Postgres Database URL>/<Your Database name>
username: <Your Database username>
password: <Your Database password>
data:
mongodb:
uri: <Your MongoDB URI>Important
Make sure flyway is enabled as Spring Batch and Spring Cloud Task needs their schema to be created.
Used internally by the framework to persist and retrieve metadata about the jobs and tasks.
On first run, it creates schema and populates sample data for past three months into MongoDB collections.
For details refer to DataPopulator.
Depending on dataset size to be created the application may take a while to start, the first time. In subsequent runs, it will start quickly.
You can change the number of accounts to be created as follows
// Total number of Credit card accounts to be created
// For each account upto 10 transactions are created for each day of last 3 months
private static final int ACCOUNTS_COUNT = 1000;
// Number of records to be created in a batch
private static final int BATCH_SIZE = 1000;Job may take following optional parameters, defaults are taken if not specified.
Refer to StatementApi for more details.
cardNumbers- Comma separated list of Credit card numbers to process. If not specified, all accounts are processed. Example:cardNumbers=5038-1972-4899-4180,5752-0862-5835-3760month- Month (IST) in ISO format yyyy-MM, for which statement is to be generated. If not specified, last month is taken. Example:month=2023-11forceRestart- If set to true, job is restarted even if its last execution with same parameters was successful. If not specifiedfalseis taken as default, in this case if its last execution with same parameters was successful then Job would not execute again. Example:forceRestart=true
- Access
Swaggerat http://localhost:8080/swagger-ui.html - Access Statement APIs at http://localhost:8080/swagger-ui/index.html?urls.primaryName=Statement
- Execute Statement Job
curl -X 'PUT' \
'http://localhost:8080/v1/statements/job' \
-H 'accept: */*'
- Get Statements
curl -X 'GET' \
'http://localhost:8080/v1/statements' \
-H 'accept: */*'
The application uses spring-batch-commons to avail common Spring Batch components, out of box.
Maven
<dependency>
<groupId>io.github.officiallysingh</groupId>
<artifactId>spring-batch-commons</artifactId>
<version>1.0</version>
</dependency>Or Gradle
implementation 'io.github.officiallysingh:spring-batch-commons:1.0'Defines a Partitioned Job with a single step as follows.
For details, refer to StatementJobConfiguration.
Reader and Writer are self-explanatory. Processor should contain all business logic and Multiple processors can be chained together using
CompositeItemProcessor.
BeanValidatingItemProcessor is used to validate the input data.
@Configuration
@AutoConfigureAfter(value = {BatchConfiguration.class})
class StatementJobConfiguration extends JobConfigurationSupport<DailyTransaction, Statement> {
@Bean
Job statementJob(
@Qualifier("statementJobPartitioner") final AccountsPartitioner statementJobPartitioner,
final ItemReader<DailyTransaction> transactionReader,
final ItemProcessor<DailyTransaction, Statement> statementProcessor,
final ItemWriter<Statement> statementWriter)
throws Exception {
return newPartitionedJob(
AppConstants.STATEMENT_JOB_NAME,
statementJobPartitioner,
transactionReader,
statementProcessor,
statementWriter);
}
@Bean
@StepScope
AccountsPartitioner statementJobPartitioner(
@Qualifier("accountMongoTemplate") final MongoTemplate accountMongoTemplate,
@Value("#{jobParameters['" + AppConstants.JOB_PARAM_NAME_CARD_NUMBERS + "']}")
final List<String> cardNumbers) {
return new AccountsPartitioner(accountMongoTemplate, this.batchProperties, cardNumbers);
}
@Bean
@StepScope
MongoAggregationPagingItemReader<DailyTransaction> transactionReader(
@Qualifier("transactionMongoTemplate") final MongoTemplate transactionMongoTemplate,
@Value("#{jobParameters['" + AppConstants.JOB_PARAM_NAME_STATEMENT_MONTH + "']}")
final String month,
@Value("#{stepExecutionContext['" + AppConstants.CARD_NUMBERS_KEY + "']}")
final String cardNumbers) {
final YearMonth statementMonth = YearMonth.parse(month);
List<String> cardNumbersList =
StringUtils.isNotBlank(cardNumbers)
? Arrays.asList(cardNumbers.split(PARTITION_DATA_VALUE_SEPARATOR))
: Collections.emptyList();
OffsetDateTime fromDateTime =
statementMonth.atDay(1).atStartOfDay().atOffset(DateTimeUtils.ZONE_OFFSET_IST);
OffsetDateTime tillDateTime =
statementMonth
.atEndOfMonth()
.plusDays(1)
.atStartOfDay()
.atOffset(DateTimeUtils.ZONE_OFFSET_IST);
Criteria condition = null;
if (CollectionUtils.isNotEmpty(cardNumbersList)) {
condition =
Criteria.where("card_number")
.in(cardNumbersList)
.and("datetime")
.gte(fromDateTime)
.lt(tillDateTime);
} else {
condition = Criteria.where("datetime").gte(fromDateTime).lt(tillDateTime);
}
final AggregationOperation[] aggregationOperations =
new AggregationOperation[] {
match(condition),
project("card_number", "amount", "datetime")
.andExpression("{$toDate: '$datetime'}")
.as("date"),
group("card_number", "date").sum("amount").as("amount"),
project("card_number", "date", "amount").andExclude("_id"),
sort(Sort.Direction.ASC, "card_number", "date")
};
MongoAggregationPagingItemReader<DailyTransaction> itemReader =
new MongoAggregationPagingItemReader<>();
itemReader.setName("transactionsReader");
itemReader.setTemplate(transactionMongoTemplate);
itemReader.setCollection("transactions");
itemReader.setTargetType(DailyTransaction.class);
itemReader.setAggregationOperation(aggregationOperations);
itemReader.setPageSize(this.batchProperties.getPageSize());
return itemReader;
}
@Bean
CompositeItemProcessor<DailyTransaction, Statement> statementProcessor(
final BeanValidatingItemProcessor<DailyTransaction> beanValidatingDailyTransactionProcessor) {
final CompositeItemProcessor<DailyTransaction, Statement> compositeProcessor =
new CompositeItemProcessor<>();
compositeProcessor.setDelegates(
Arrays.asList(beanValidatingDailyTransactionProcessor, new StatementProcessor()));
return compositeProcessor;
}
@Bean
BeanValidatingItemProcessor<DailyTransaction> beanValidatingDailyTransactionProcessor(
final LocalValidatorFactoryBean validatorFactory) {
return new BeanValidatingItemProcessor<>(validatorFactory);
}
// Idempotent upsert
@Bean
MongoItemWriter<Statement> statementWriter(
@Qualifier("mongoTemplate") final MongoTemplate statementMongoTemplate) {
return MongoItemWriters.<Statement>template(statementMongoTemplate)
.collection("statements")
.idGenerator(
(Statement item) ->
MongoIdGenerator.compositeIdGenerator(item.cardNumber(), item.transactionDate()))
.build();
}
}Important
Any component needing access to stepExecutionContext must be defined as @StepScope bean
and to access jobParameters or jobExecutionContext must be defined as @JobScope bean
If specific cardNumbers are passed as job parameters, then the job is partitioned on these account numbers only.
Otherwise, all accounts are processed in parallel by partitioning on account numbers.
For details refer to AccountsPartitioner.
@Slf4j
public class AccountsPartitioner extends AbstractPartitioner {
private final MongoTemplate accountMongoTemplate;
private final List<String> cardNumbers;
AccountsPartitioner(
@Qualifier("accountMongoTemplate") final MongoTemplate accountMongoTemplate,
final BatchProperties batchProperties,
final List<String> cardNumbers) {
super(batchProperties, AppConstants.CARD_NUMBERS_KEY);
this.accountMongoTemplate = accountMongoTemplate;
this.cardNumbers = cardNumbers;
}
@Override
public List<String> partitioningList() {
final Bson condition =
CollectionUtils.isNotEmpty(this.cardNumbers)
? in("card_number", this.cardNumbers)
: Filters.empty();
return this.accountMongoTemplate
.getCollection("accounts")
.find(condition)
.projection(fields(excludeId(), include("card_number")))
.sort(ascending("card_number"))
.map(doc -> doc.getString("card_number"))
.into(new ArrayList<>());
}
}Different databases can be configured for statement_db, account_db and transaction_db or all can be set to same database URI as follows.
Converters and Codecs are registered to support OffsetDateTime and ZonedDateTime types in MongoTemplate.
Refer to MongoDBConfig for details.
spring:
data:
mongodb:
uri: <Statement DB URI>
database: statement_db
account:
uri: <Account DB URI>
database: account_db
transaction:
uri: <Transaction DB URI>
database: transaction_dbFollowing are the configuration properties to customize default Spring batch behaviour.
batch:
chunk-size: 100
skip-limit: 10
max-retries: 3
backoff-initial-delay: PT3S
backoff-multiplier: 2
page-size: 300
partition-size: 16
trigger-partitioning-threshold: 100
task-executor: applicationTaskExecutor
# run-id-sequence: run_id_sequencebatch.chunk-size: Number of items that are processed in a single transaction by a chunk-oriented step, Default: 100.batch.skip-limit: Maximum number of items to skip as per configured Skip policy, exceeding which fails the job, Default: 10.batch.max-retries: Maximum number of retry attempts as configured Retry policy, exceeding which fails the job, Default: 3.batch.backoff-initial-delay: Time duration (in java.time.Duration format) to wait before the first retry attempt is made after a failure, Default: false.batch.backoff-multiplier: Factor by which the delay between consecutive retries is multiplied, Default: 3.batch.page-size: Number of records to be read in each page by Paging Item readers, Default: 100.batch.partition-size: Number of partitions that will be used to process the data concurrently. Should be optimized as per available machine resources, Default: 8.batch.trigger-partitioning-threshold: Minimum number of records to trigger partitioning otherwise it could be counter productive to do partitioning, Default: 100.batch.task-executor: Bean name of the Task Executor to be used for executing the jobs. By defaultSyncTaskExecutoris used. Set toapplicationTaskExecutorto useSimpleAsyncTaskExecutorprovided by Spring. Or use any other customTaskExecutorand set the bean name here. Don't set this property in Spring cloud task but Spring Rest applications.batch.run-id-sequence: Run Id database sequence name, Default:run_id_sequence.
Important
It is required to set batch.task-executor as some implementation of AyncTaskExecutor to submit jobs asynchronously.
To take benefit from Java 21 Virtual threads with Spring boot 3.2 define a VirtualThreadTaskExecutor and configure the name as batch.task-executor.
Rajveer Singh, In case you find any issues or need any support, please email me at raj14.1984@gmail.com
- Refer to Spring batch common components and utilities
spring-batch-commons. - Refer to Spring Batch Job implemented as Spring Cloud Task
spring-boot-batch-cloud-task. - For exception handling refer to
spring-boot-problem-handler. - For Spring Data MongoDB Auditing refer to
spring-boot-mongodb-auditing. - For more details on Spring Batch refer to
Spring Batch Reference. - To deploy on Spring cloud Data Flow refer to
Spring Cloud Data Flow Reference.
