A multi-modal MCP layer for real life — built on a continuous video feed, semantic search and natural language video understanding.
LifeOS is the foundational layer for smart glasses, providing context and automations on top of your real-life experiences. It leverages video/audio ingestion, semantic search, and automation triggers to help you recall memories, automate tasks, and interact with your life data.
Demo: https://youtube.com/shorts/FRpwVwfdIlM?feature=share
┌───────────────┐ ┌────────────────────┐ ┌────────────────────┐
│ Frontend │ │ Web API Service │ │ Local Video │
│ (Next.js) │◄──►│ (FastAPI) │◄──►│ Processing │
└───────────────┘ └────────────────────┘ └────────────────────┘
│
▼
┌────────────────────┐
│ External APIs │
│ (Qdrant, S3, │
│ TwelveLabs, etc) │
└────────────────────┘
- Frontend: Mobile-first Next.js app, Tailwind CSS, Framer Motion
- Backend: FastAPI server, Docker, Asyncio, Redis Queue
- External Services: Qdrant (vector DB), S3 (raw video storage), Supabase, TwelveLabs (summarization + embedding), OpenAI
- Continuous Context Capture: Ingests video/audio, summarizes, and embeds into a vector DB.
- Semantic Memory Search: Natural language search over your life memories.
- Agentic Automations: LLMs trigger actions (e.g., add calendar events) based on context.
- Extensible Integrations: Foundational layer provides context and an automation pipeline to integrate external tools like Google Calendar and internal features like highlights clipping.
- Bottom navigation: Chatbot, Highlights, Recent Activity, Automations.
- Semantic search bar: Find relevant videos and context with natural language.
- Customizable dashboard widgets (e.g., time, summary of day).
- Chatbot: Query your life memory and trigger automations.
See docs/frontend_vision.md for full design philosophy.
- Continuous video feed: Uses OpenCV and PyAudio to feed 10 second clips to the pipeline.
- Media processing pipeline: Async workers process and summarize video/audio, store in S3, embed in Qdrant.
- Memory system: Ingests, stores, and retrieves memories with semantic search.
- Automation engine: LLM-based triggers for external integrations.
- RESTful API: Auth, media, memory, automation, and summary endpoints.
See server/README.md for backend details.
- Python 3.11+
- Node.js 18+
- Docker
- Redis
- AWS S3
- TwelveLabs API key
- OpenAI API key
# Clone the repository
git clone https://github.com/owenguoo/LifeOS.git
cd LifeOS/server
# Copy and configure environment variables
cp env.example .env
# Start services (Qdrant, Redis, server)
docker-compose up -d
# Install dependencies (if running locally)
pip install -r requirements.txtcd LifeOS/server
pip install -r requirements.txt
python main.py bothcd LifeOS/client/lifeos
npm install
npm run devOpen http://localhost:3000 in your browser.
POST /api/v1/auth/register– RegisterPOST /api/v1/auth/login– LoginPOST /api/v1/auth/logout– Logout
POST /api/v1/media/upload– Upload video/audioGET /api/v1/media/{media_id}– Get metadataGET /api/v1/media/{media_id}/status– Processing status
POST /api/v1/memory/search– Semantic searchGET /api/v1/memory/recent– Recent memoriesGET /api/v1/memory/{memory_id}– Get memory
POST /api/v1/automation/trigger– Trigger automationGET /api/v1/automation/rules– List rulesPOST /api/v1/automation/rules– Create rule
GET /api/v1/summary/daily– Daily summaryGET /api/v1/summary/weekly– Weekly summary
POST /api/v1/memory/chatbot– Natural language memory search