Skip to content

a multi-modal MCP layer for real life — built on continuous video, semantic search and natural language video understanding.

Notifications You must be signed in to change notification settings

owenguoo/LifeOS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LifeOS

A multi-modal MCP layer for real life — built on a continuous video feed, semantic search and natural language video understanding.

Overview

LifeOS is the foundational layer for smart glasses, providing context and automations on top of your real-life experiences. It leverages video/audio ingestion, semantic search, and automation triggers to help you recall memories, automate tasks, and interact with your life data.

Demo: https://youtube.com/shorts/FRpwVwfdIlM?feature=share

Architecture

lifeos system diagram

Deployment

┌───────────────┐    ┌────────────────────┐    ┌────────────────────┐
│   Frontend    │    │   Web API Service  │    │  Local Video       │
│   (Next.js)   │◄──►│   (FastAPI)        │◄──►│  Processing        │
└───────────────┘    └────────────────────┘    └────────────────────┘
                             │
                             ▼
                      ┌────────────────────┐
                      │  External APIs     │
                      │  (Qdrant, S3,      │
                      │   TwelveLabs, etc) │
                      └────────────────────┘
  • Frontend: Mobile-first Next.js app, Tailwind CSS, Framer Motion
  • Backend: FastAPI server, Docker, Asyncio, Redis Queue
  • External Services: Qdrant (vector DB), S3 (raw video storage), Supabase, TwelveLabs (summarization + embedding), OpenAI

Key Features

  • Continuous Context Capture: Ingests video/audio, summarizes, and embeds into a vector DB.
  • Semantic Memory Search: Natural language search over your life memories.
  • Agentic Automations: LLMs trigger actions (e.g., add calendar events) based on context.
  • Extensible Integrations: Foundational layer provides context and an automation pipeline to integrate external tools like Google Calendar and internal features like highlights clipping.

Frontend

  • Bottom navigation: Chatbot, Highlights, Recent Activity, Automations.
  • Semantic search bar: Find relevant videos and context with natural language.
  • Customizable dashboard widgets (e.g., time, summary of day).
  • Chatbot: Query your life memory and trigger automations.

See docs/frontend_vision.md for full design philosophy.

Backend

  • Continuous video feed: Uses OpenCV and PyAudio to feed 10 second clips to the pipeline.
  • Media processing pipeline: Async workers process and summarize video/audio, store in S3, embed in Qdrant.
  • Memory system: Ingests, stores, and retrieves memories with semantic search.
  • Automation engine: LLM-based triggers for external integrations.
  • RESTful API: Auth, media, memory, automation, and summary endpoints.

See server/README.md for backend details.

Getting Started

Prerequisites

  • Python 3.11+
  • Node.js 18+
  • Docker
  • Redis
  • AWS S3
  • TwelveLabs API key
  • OpenAI API key

Backend

# Clone the repository
git clone https://github.com/owenguoo/LifeOS.git
cd LifeOS/server

# Copy and configure environment variables
cp env.example .env

# Start services (Qdrant, Redis, server)
docker-compose up -d

# Install dependencies (if running locally)
pip install -r requirements.txt

Local Video Processing

cd LifeOS/server
pip install -r requirements.txt
python main.py both

Frontend

cd LifeOS/client/lifeos
npm install
npm run dev

Open http://localhost:3000 in your browser.

API Endpoints

Authentication

  • POST /api/v1/auth/register – Register
  • POST /api/v1/auth/login – Login
  • POST /api/v1/auth/logout – Logout

Media

  • POST /api/v1/media/upload – Upload video/audio
  • GET /api/v1/media/{media_id} – Get metadata
  • GET /api/v1/media/{media_id}/status – Processing status

Memory

  • POST /api/v1/memory/search – Semantic search
  • GET /api/v1/memory/recent – Recent memories
  • GET /api/v1/memory/{memory_id} – Get memory

Automations

  • POST /api/v1/automation/trigger – Trigger automation
  • GET /api/v1/automation/rules – List rules
  • POST /api/v1/automation/rules – Create rule

Summaries

  • GET /api/v1/summary/daily – Daily summary
  • GET /api/v1/summary/weekly – Weekly summary

Chatbot

  • POST /api/v1/memory/chatbot – Natural language memory search

About

a multi-modal MCP layer for real life — built on continuous video, semantic search and natural language video understanding.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •