This repository contains the Python projects completed as part of a Data Analysis with Python certification.
1. Mean-Variance-Standard Deviation Calculator
- Description: A Python function that uses NumPy to calculate the mean, variance, standard deviation, max, min, and sum of the rows, columns, and flattened elements of a 3x3 matrix.
- Libraries/Functions:
- NumPy (
np):np.array,reshape,mean,var,std,max,min,sum,tolist.
- NumPy (
2. Demographic Data Analyzer
- Description: (Based on provided context, details of this project are not fully clear. It likely involves analyzing demographic data using Pandas.)
- Libraries/Functions:
- Pandas (
pd): DataFrames, data loading (read_csv), data manipulation (filtering, calculations).
- Pandas (
3. Medical Data Visualizer
- Description: Visualizes medical examination data using Pandas, Matplotlib, and Seaborn to understand patterns and relationships.
- Libraries/Functions:
- Pandas (
pd): DataFrames, data loading (read_csv), data manipulation. - Matplotlib (
plt): Creating plots (figure,subplots,scatter,plot,xlabel,ylabel,title,legend,savefig). - Seaborn (
sns): Statistical data visualization (catplot,heatmap). - NumPy (
np): Array operations (e.g., masking for heatmap).
- Pandas (
4. Page View Time Series Visualizer
- Description: Visualizes time series data of freeCodeCamp.org forum page views using Pandas, Matplotlib, and Seaborn to understand daily, yearly, and monthly trends.
- Libraries/Functions:
- Pandas (
pd): Time series data handling (setting index to date, creating year/month columns), data manipulation (melt,value_counts,groupby,unstack). - Matplotlib (
plt): Line charts, bar charts, box plots (plot,bar,boxplot,xticks,tight_layout). - Seaborn (
sns): Box plots (boxplot).
- Pandas (
5. Sea Level Predictor
- Description: Analyzes a dataset of global average sea level change and uses linear regression from SciPy to predict sea level rise through the year 2050.
- Libraries/Functions:
- Pandas (
pd): Data loading (read_csv), data filtering. - Matplotlib (
plt): Scatter plots, line plots (scatter,plot,xlabel,ylabel,title,legend,savefig). - SciPy (
scipy.stats): Linear regression (linregress). - NumPy (
np): Creating numerical ranges (arange).
- Pandas (