Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 59 additions & 0 deletions Cust_Segmentation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import random
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets.samples_generator import make_blobs
import pandas as pd
from sklearn.preprocessing import StandardScaler
from mpl_toolkits.mplot3d import Axes3D

cust_df = pd.read_csv("https://raw.githubusercontent.com/sumyak/ML-Algos-and-Techniques/master/Clustering/K-Means%20Clustering/Cust_Segmentation.csv")

#data pre processing
df = cust_df.drop('Address', axis=1)

#Normalizing over the standard deviation
X = df.values[:,1:]
X = np.nan_to_num(X)
Clus_dataSet = StandardScaler().fit_transform(X)
Clus_dataSet

X = df.values[:,1:]
X = np.nan_to_num(X)
Clus_dataSet = StandardScaler().fit_transform(X)
Clus_dataSet

#Modeling
clusterNum = 3
k_means = KMeans(init = "k-means++", n_clusters = clusterNum, n_init = 12)
k_means.fit(X)
labels = k_means.labels_


df["Clus_km"] = labels
df.head(5)

print(df.groupby('Clus_km').mean())


#plot
area = np.pi * ( X[:, 1])**2
plt.scatter(X[:, 0], X[:, 3], s=area, c=labels.astype(np.float), alpha=0.5)
plt.xlabel('Age', fontsize=18)
plt.ylabel('Income', fontsize=16)

plt.show()

fig = plt.figure(1, figsize=(8, 6))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()
# plt.ylabel('Age', fontsize=18)
# plt.xlabel('Income', fontsize=16)
# plt.zlabel('Education', fontsize=16)
ax.set_xlabel('Education')
ax.set_ylabel('Age')
ax.set_zlabel('Income')

ax.scatter(X[:, 1], X[:, 0], X[:, 3], c= labels.astype(np.float))