-
Couldn't load subscription status.
- Fork 355
[CPU] Improve INT8 SDPA template #3230
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,3 +1,9 @@ | ||
| # Copyright (c) Meta Platforms, Inc. and affiliates. | ||
| # All rights reserved. | ||
| # | ||
| # This source code is licensed under the BSD 3-Clause license found in the | ||
| # LICENSE file in the root directory of this source tree. | ||
|
|
||
| from typing import List, Optional | ||
|
|
||
| import torch | ||
|
|
@@ -239,22 +245,22 @@ | |
| long col = 0; | ||
| for (; col < vec_size * (kvBlockSize / vec_size); col += vec_size) { | ||
| auto tmp0 = at::vec::Vectorized<float>::loadu(tmp_in + col); | ||
| auto tmp1 = tmp0 * vec_sum_scale; | ||
| auto tmp2 = tmp1.round(); | ||
| auto tmp3 = tmp2 + vec_beta1; | ||
| auto tmp1 = at::vec::fmadd(tmp0, vec_sum_scale, vec_beta1); | ||
| auto tmp3 = tmp1.round(); | ||
| auto tmp4 = at::vec::clamp(tmp3, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp4); | ||
| auto tmp6 = at::vec::convert<int32_t>(tmp4); | ||
| auto tmp7 = at::vec::convert<scalar_t>(tmp6); | ||
| tmp7.store(tmp_out + col, vec_size); | ||
| vec_tmp_sum += tmp6; | ||
| } | ||
| if (col < kvBlockSize) { | ||
| auto tmp0 = at::vec::Vectorized<float>::loadu(tmp_in + col, kvBlockSize - col); | ||
| auto tmp1 = tmp0 * vec_sum_scale; | ||
| auto tmp2 = tmp1.round(); | ||
| auto tmp3 = tmp2 + vec_beta1; | ||
| auto tmp1 = at::vec::fmadd(tmp0, vec_sum_scale, vec_beta1); | ||
| auto tmp3 = tmp1.round(); | ||
| auto tmp4 = at::vec::clamp(tmp3, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp4, kvBlockSize - col); | ||
| auto tmp6 = at::vec::convert<int32_t>(tmp4); | ||
| auto tmp7 = at::vec::convert<scalar_t>(tmp6); | ||
| tmp7.store(tmp_out + col, kvBlockSize - col); | ||
| vec_tmp_sum = at::vec::Vectorized<int32_t>::set(vec_tmp_sum, vec_tmp_sum + tmp6, kvBlockSize - col); | ||
| } | ||
| sum_a_ptr[row] += vec_tmp_sum.reduce_add() * beta2; | ||
|
|
@@ -341,17 +347,15 @@ | |
| long col = 0; | ||
| for (; col < vec_size * (kvBlockSize / vec_size); col += vec_size) { | ||
| auto tmp0 = at::vec::Vectorized<float>::loadu(tmp_in + col); | ||
| auto tmp1 = tmp0 * vec_sum_scale; | ||
| auto tmp2 = tmp1.round(); | ||
| auto tmp3 = tmp2 + vec_beta1; | ||
| auto tmp1 = at::vec::fmadd(tmp0, vec_sum_scale, vec_beta1); | ||
| auto tmp3 = tmp1.round(); | ||
| auto tmp4 = at::vec::clamp(tmp3, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp4); | ||
| } | ||
| if (col < kvBlockSize) { | ||
| auto tmp0 = at::vec::Vectorized<float>::loadu(tmp_in + col, kvBlockSize - col); | ||
| auto tmp1 = tmp0 * vec_sum_scale; | ||
| auto tmp2 = tmp1.round(); | ||
| auto tmp3 = tmp2 + vec_beta1; | ||
| auto tmp1 = at::vec::fmadd(tmp0, vec_sum_scale, vec_beta1); | ||
| auto tmp3 = tmp1.round(); | ||
| auto tmp4 = at::vec::clamp(tmp3, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp4, kvBlockSize - col); | ||
| } | ||
|
|
@@ -406,9 +410,8 @@ | |
| auto tmp2 = tmp1 - vec_sum_a; | ||
| auto tmp3 = tmp2 + vec_beta1; | ||
| auto tmp4 = at::vec::convert<float>(tmp3); | ||
| auto tmp5 = tmp4 * vec_alpha; | ||
| auto tmp6 = tmp5.round(); | ||
| auto tmp7 = tmp6 + vec_beta2; | ||
| auto tmp5 = at::vec::fmadd(tmp4, vec_alpha, vec_beta2); | ||
| auto tmp7 = tmp5.round(); | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ditto. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Updated. Thanks. |
||
| auto tmp8 = at::vec::clamp(tmp7, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp8); | ||
| } | ||
|
|
@@ -419,9 +422,8 @@ | |
| auto tmp2 = tmp1 - vec_sum_a; | ||
| auto tmp3 = tmp2 + vec_beta1; | ||
| auto tmp4 = at::vec::convert<float>(tmp3); | ||
| auto tmp5 = tmp4 * vec_alpha; | ||
| auto tmp6 = tmp5.round(); | ||
| auto tmp7 = tmp6 + vec_beta2; | ||
| auto tmp5 = at::vec::fmadd(tmp4, vec_alpha, vec_beta2); | ||
| auto tmp7 = tmp5.round(); | ||
| auto tmp8 = at::vec::clamp(tmp7, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp8, N - col); | ||
| } | ||
|
|
@@ -463,19 +465,17 @@ | |
| auto tmp3 = tmp1 - vec_sum_a; | ||
| // auto tmp3 = tmp2 + vec_beta1; | ||
| auto tmp4 = at::vec::convert<float>(tmp3); | ||
| auto tmp5 = tmp4 * vec_alpha; | ||
| auto tmp6 = tmp5.round(); | ||
| auto tmp7 = tmp6 + vec_beta2; | ||
| auto tmp5 = at::vec::fmadd(tmp4, vec_alpha, vec_beta2); | ||
| auto tmp7 = tmp5.round(); | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ditto. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Updated. Thanks. |
||
| auto tmp8 = at::vec::clamp(tmp7, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp8); | ||
| } | ||
| if (col < N) { | ||
| auto tmp1 = at::vec::Vectorized<int32_t>::loadu(tmp_in + col, N - col); | ||
| auto tmp3 = tmp1 - vec_sum_a; | ||
| auto tmp4 = at::vec::convert<float>(tmp3); | ||
| auto tmp5 = tmp4 * vec_alpha; | ||
| auto tmp6 = tmp5.round(); | ||
| auto tmp7 = tmp6 + vec_beta2; | ||
| auto tmp5 = at::vec::fmadd(tmp4, vec_alpha, vec_beta2); | ||
| auto tmp7 = tmp5.round(); | ||
| auto tmp8 = at::vec::clamp(tmp7, vec_min_val, vec_max_val); | ||
| store(tmp_out + col, tmp8, N - col); | ||
| } | ||
|
|
@@ -1384,7 +1384,7 @@ | |
| q_sum_ptr, static_cast<int32_t>(0), qSplitSize); | ||
| {%- endif %} | ||
| const int64_t rkvSlice = (num_keys - 1) / kvSplitSize + 1; | ||
|
|
||
| for (int64_t l = 0; l < rkvSlice; l++) { | ||
| int64_t n = l * kvSplitSize; | ||
| int64_t kvBlockSize = std::min(kvSplitSize, kvSize - n); | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Could we also apply the optimization to the below masked vectorization part?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Updated. Thanks.