Skip to content

DL 2025 team project. Reproducible comparison of continuous‑time Neural ODE models against discrete‑time baselines (ResNet, RNN, LSTM) on irregular time‑series forecasting tasks.

Notifications You must be signed in to change notification settings

rainbowbrained/Neural_ODE

Repository files navigation

Neural ODE 🧩⏱️

Reproducible continuous-time deep-learning benchmark. DL 2025 team project. Reproducible comparison of continuous‑time Neural ODE models against discrete‑time baselines (ResNet, RNN, LSTM) on irregular time‑series forecasting tasks.

PythonPyTorch

Neural ODE compares continuous-depth models against classic discrete-time baselines (ResNet-18, GRU, Time-LSTM) on irregular time-series and vision.

📊 Results

Task / Metric ResNet-18 GRU (Δt) Time-LSTM Neural ODE
MNIST – Acc ↑ 99.31 % 97.40 % 99.23 % 99.17 %
  Params 11.7 M 1.2 M 11.7 M 0.21 M
  Latency ↓ 11 ms 0.49 ms 3 ms 3 ms
CIFAR-10 – Acc ↑ 95.1 % 48.70 % 94.8 % 74.2 %
  Latency ↓ 12 ms 0.83 ms 4 ms 201 ms
PhysioNet 2012 – AUROC ↑ 0.742 0.786 0.693 0.754
  Latency ↓ 7 ms 1.69 ms 0.6 ms 2.0 ms

🗂️ Datasets

Name Domain Samples Δt pattern
PhysioNet ICU 2012 41 vital-sign channels 8 k patients Highly irregular
MNIST / CIFAR-10 Vision (28×28 / 32×32×3) 60 k / 50 k images Uniform

🏗️ Repository Layout

├── 1806.07366v5.pdf            # main paper
│
├── DL_NeuralODE.pdf      
├── GRU_implementation.ipynb
├── LSTM_MNIST_CIFAR-10_PhysioNet.ipynb
│
├── NeuralODE.ipynb            # initial Neural ODE draft
├── odenet_cifar10_metric.py   # Neural ODE on CIFAR10
├── odenet_mnist_metric.py     # Neural ODE on MNIST
├── odenet_physionet.py        # Neural ODE on PhysioNet
│
├── ResNet_CIFAR.ipynb        # ResNet on CIFAR
├── ResNet_MNIST.ipynb        # ResNet on MNIST
│
├── utils.py          
└── report.pdf                # project defense presentation

Team & Roles

Member Role Responsibility
@dpetrov835 Dmitry ResNet Lead Deep residual baseline
@Sklaveman Artemiy RNN Lead GRU baseline
@Akmuhammet01 Akmuhammed LSTM Lead LSTM baseline
@alina2002200 Alina ODE Lead Neural ODE module
@rainbowbrained Data & MLOps Dataset, CI, sweeps, evaluation

About

DL 2025 team project. Reproducible comparison of continuous‑time Neural ODE models against discrete‑time baselines (ResNet, RNN, LSTM) on irregular time‑series forecasting tasks.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •