Reproducible continuous-time deep-learning benchmark. DL 2025 team project. Reproducible comparison of continuous‑time Neural ODE models against discrete‑time baselines (ResNet, RNN, LSTM) on irregular time‑series forecasting tasks.
Neural ODE compares continuous-depth models against classic discrete-time baselines (ResNet-18, GRU, Time-LSTM) on irregular time-series and vision.
| Task / Metric | ResNet-18 | GRU (Δt) | Time-LSTM | Neural ODE |
|---|---|---|---|---|
| MNIST – Acc ↑ | 99.31 % | 97.40 % | 99.23 % | 99.17 % |
| Params | 11.7 M | 1.2 M | 11.7 M | 0.21 M |
| Latency ↓ | 11 ms | 0.49 ms | 3 ms | 3 ms |
| CIFAR-10 – Acc ↑ | 95.1 % | 48.70 % | 94.8 % | 74.2 % |
| Latency ↓ | 12 ms | 0.83 ms | 4 ms | 201 ms |
| PhysioNet 2012 – AUROC ↑ | 0.742 | 0.786 | 0.693 | 0.754 |
| Latency ↓ | 7 ms | 1.69 ms | 0.6 ms | 2.0 ms |
| Name | Domain | Samples | Δt pattern |
|---|---|---|---|
| PhysioNet ICU 2012 | 41 vital-sign channels | 8 k patients | Highly irregular |
| MNIST / CIFAR-10 | Vision (28×28 / 32×32×3) | 60 k / 50 k images | Uniform |
├── 1806.07366v5.pdf # main paper
│
├── DL_NeuralODE.pdf
├── GRU_implementation.ipynb
├── LSTM_MNIST_CIFAR-10_PhysioNet.ipynb
│
├── NeuralODE.ipynb # initial Neural ODE draft
├── odenet_cifar10_metric.py # Neural ODE on CIFAR10
├── odenet_mnist_metric.py # Neural ODE on MNIST
├── odenet_physionet.py # Neural ODE on PhysioNet
│
├── ResNet_CIFAR.ipynb # ResNet on CIFAR
├── ResNet_MNIST.ipynb # ResNet on MNIST
│
├── utils.py
└── report.pdf # project defense presentation
| Member | Role | Responsibility |
|---|---|---|
| @dpetrov835 Dmitry | ResNet Lead | Deep residual baseline |
| @Sklaveman Artemiy | RNN Lead | GRU baseline |
| @Akmuhammet01 Akmuhammed | LSTM Lead | LSTM baseline |
| @alina2002200 Alina | ODE Lead | Neural ODE module |
| @rainbowbrained | Data & MLOps | Dataset, CI, sweeps, evaluation |