Skip to content

AI-powered documentation assistant for OpenClaw. Get instant answers about installation, configuration, and features using RAG and OpenRouter API.

Notifications You must be signed in to change notification settings

runshiftprime/ClawGPT-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ClawGPT 🦞

Streamlit App

AI-Powered Documentation Assistant for OpenClaw - Get instant, intelligent answers about OpenClaw features, installation, configuration, and troubleshooting.

ClawGPT Screenshot

✨ Features

  • 🧠 RAG-Powered Q&A - Retrieval-Augmented Generation for accurate, context-aware answers
  • ⚡ Instant Responses - Pre-built embeddings for lightning-fast query processing
  • 🎯 Source Attribution - See exactly which documentation pages inform each answer
  • 💬 Chat Interface - Natural conversation with chat history
  • 🔍 Semantic Search - Find relevant information even with imprecise queries
  • 📱 Responsive Design - Works beautifully on desktop and mobile

🛠️ Tech Stack

  • LLM: Google Gemini 2.0 Flash
  • Embeddings: Gemini Embedding 001
  • Vector Database: ChromaDB
  • Frontend: Streamlit
  • Framework: LangChain

🚀 Quick Start

Prerequisites

Installation

  1. Clone the repository

    git clone https://github.com/yourusername/ClawGPT-.git
    cd ClawGPT-
  2. Create virtual environment

    python -m venv venv
    
    # Windows
    venv\Scripts\activate
    
    # macOS/Linux
    source venv/bin/activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Configure environment

    cp .env.example .env
    # Edit .env and add your GEMINI_API_KEY
  5. Generate embeddings (one-time setup)

    python create_embeddings.py
  6. Run the application

    streamlit run app.py

Visit http://localhost:8501 to start chatting!

📁 Project Structure

ClawGPT/
├── app.py                 # Main Streamlit application
├── create_embeddings.py   # Script to generate vector embeddings
├── requirements.txt       # Python dependencies
├── .env                   # Environment variables (not tracked)
├── .env.example           # Environment template
├── .gitignore             # Git ignore rules
├── assets/                # Static assets
│   └── logo.png           # Application logo
├── pdfs/                  # OpenClaw documentation (markdown files)
├── chroma_db/             # Vector store (generated)
└── README.md              # This file

🔧 Configuration

Environment Variables

Variable Description Required
GEMINI_API_KEY Google Gemini API key Yes

Customization

  • Adjust context chunks: Use the sidebar slider (3-10)
  • Toggle sources: Show/hide source documents
  • Add logo: Place your logo at assets/logo.png

📊 How It Works

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   User Query    │───▶│  Semantic Search │───▶│ Relevant Chunks │
└─────────────────┘    │   (ChromaDB)     │    └────────┬────────┘
                       └──────────────────┘             │
                                                        ▼
┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│    Response     │◀───│   Gemini 2.0     │◀───│  Context + Query│
└─────────────────┘    │     Flash        │    └─────────────────┘
                       └──────────────────┘
  1. Document Processing: Markdown files are loaded and split into chunks
  2. Embedding Generation: Each chunk is converted to a vector using Gemini Embedding
  3. Vector Storage: Embeddings are stored in ChromaDB for fast retrieval
  4. Query Processing: User questions are embedded and matched against stored vectors
  5. Response Generation: Relevant chunks + query are sent to Gemini 2.0 Flash for response

🌐 Deployment

Streamlit Cloud

  1. Push to GitHub
  2. Connect to Streamlit Cloud
  3. Add GEMINI_API_KEY to secrets
  4. Deploy!

Docker

FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["streamlit", "run", "app.py", "--server.port=8501"]

📈 SEO & Discoverability

ClawGPT is optimized for search engines with:

  • Semantic HTML structure
  • OpenGraph meta tags
  • Twitter Card support
  • Descriptive page titles
  • Canonical URLs

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📄 License

This project is for educational purposes.

🔗 Links


Made with ❤️ | Powered by Google Gemini 2.0

About

AI-powered documentation assistant for OpenClaw. Get instant answers about installation, configuration, and features using RAG and OpenRouter API.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages