Skip to content

tienmt/heavylasso

Repository files navigation

heavylasso

This is based on the paper:
"Heavy Lasso: sparse penalized regression under heavy-tailed noise via data-augmented soft-thresholding."

Installation

Install the package using:

devtools::install_github('tienmt/heavylasso')
library(heavylasso)

# simulate data
n <- 100; p <- 10
X <- matrix(rnorm(n * p), n, p)
beta_true <- c(1, -1, rep(0, p - 2))
y <- X %*% beta_true + rt(n, df = 3)  # heavy-tailed noise
 fit <- heavylasso(X, y, lambda = 0.1)
 print(fit$coefficients)
.

About

heavylasso: robust Lasso for heavy-tailed error and outlier

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published