Implementation of EfficientNet: Rethinking Model Scaling for CNNs
-
Updated
Feb 14, 2021 - Jupyter Notebook
Implementation of EfficientNet: Rethinking Model Scaling for CNNs
An automated image analysis tool for quantification of fat cells
A collection of 8 Applied Data Science projects.
Birds Classification by using Scikit-learn and Scikit-image
Analyzed multiple metrics used in image comparison.
The college assignment processing an image
A real-time intelligent surveillance system designed to detect human falls and anomalous behaviors using deep learning techniques. Includes automated alerting, a monitoring dashboard, and scalable deployment via Docker and Kubernetes.
Image Processing with Python, OpenCV, and Scikit-image
A tool to extract all sensitive informations for image analysis to detect tampering of images
Python Astronomical Data Analysis and Visualization.
Este projeto, Signature Recognizer, é um protótipo de sistema de verificação de assinaturas. Utilizando redes siamesas e Triplet Loss em PyTorch, ele gera embeddings de assinaturas (CEDAR com EfficientNet-B0). O foco é a análise biométrica, avaliando a autenticidade de assinaturas através da similaridade de seus embeddings e métricas como Curva ROC
Projet sur l'astrophotographie réalisé lors du 3ème Semestre de BUT
A Python-based image search system that finds similar images based on visual content rather than text tags or metadata.
The ParkSpotter project is designed to detect the occupancy status of parking spots in a simulation environment. Using a toy model, a camera system, and a machine learning model, this system identifies whether a parking space is EMPTY or NOT EMPTY in real-time.
This repository contains code for a highly efficient LSTM based DL model which could predict greenhouse gas emissions using satellite imagery data.
Add a description, image, and links to the sckit-image topic page so that developers can more easily learn about it.
To associate your repository with the sckit-image topic, visit your repo's landing page and select "manage topics."