- CPU: AMD 7950X
- GPU: RTX 2080ti
It's recommand to create a virtual enviroment, e.g. conda.
pip install -r requirements.txtTo download the fine-tuned models for reproducing.
bash download.shTo preporcess the data and training.
- Running shell script.
bash train.shor
-
And here is how you would use it on your own files, after adjusting the values for the arguments
--train_path,--dev_pathto match your setup -
You could also setting different hyperameters by adjusting the values for the arguments
--learning_rate,--num_epochs
python3 src/span-aste/train.py \
--batch_size 1 \
--learning_rate 5e-5 \
--weight_decay 1e-2 \
--warmup_proportion 0.1 \
--train_path processed_data \
--dev_path processed_data \
--ckpt_dir ckpt/span-aste \
--output_dir output \
--max_seq_len 256 \
--num_epochs 70 \
--seed 2022 \
--logging_steps 480 \
--valid_steps 480 \
# --init_from_ckpt \- Sentiment analysis
- Running shell script.
bash test.shor
- You could also setting different parameter in
--test_pathto save the output in other location.
python3 src/span-aste/test.py \
--test_path processed_data \
--ckpt ckpt/span-aste \
--output_dir output \- Topic model
- Executing
.ipynbfiles in /src/Bertopic - Name of the file represent the test data crawl from which topic on Reddit.