Skip to content

Python implementation of "PARROT: Position-Aware Regularized Optimal Transport for Network Alignment".

Notifications You must be signed in to change notification settings

yq-leo/PARROT-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PARROT-Python

Python implementation of "PARROT: Position-Aware Regularized Optimal Transport for Network Alignment". The official implementation is here.

Prerequisites

  • numpy
  • scipy
  • pytorch
  • tqdm

Datasets

You can run main.py using one of the following datasets

  • ACM-DBLP-A
  • ACM-DBLP-P
  • cora
  • foursquare-twitter
  • phone-email

Efficiency

Dataset / Runtime MATLAB PyTorch (CPU) PyTorch (GPU, V100)
ACM_DBLP_A 12.32s + 53.95s 110.55s + 241.52s 28.48s + 24.64s
ACM_DBLP_P 15.44s + 59.52s 89.29s + 241.11s 21.67s + 24.48s
cora 7.20s + 8.07s 3.11s + 7.78s 3.36s + 0.77s
foursquare-twitter 6.89s + 17.59s 23.92s + 46.93s 8.53s + 4.03s
phone-email 0.32s + 1.18s 0.38s + 1.60s 1.36s + 0.33s

* Run on Apple M1 Pro 16GB

Usage

  1. Clone the repository to your local machine:
git clone https://github.com/yq-leo/PARROT-Python.git
  1. Navigate to the project directory:
cd PARROT-Python
  1. Install the required dependencies:
pip install -r requirements.txt
  1. To run PARROT, execute the following command in the terminal:
python main.py --dataset={dataset}

Reference

Official Code

PARROT-WWW23

Paper

Zeng, Z., Zhang, S., Xia, Y., & Tong, H. (2023, April). Parrot: Position-aware regularized optimal transport for network alignment. In Proceedings of the ACM Web Conference 2023 (pp. 372-382). DOI.

About

Python implementation of "PARROT: Position-Aware Regularized Optimal Transport for Network Alignment".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published